Multiples of elements in commutative rings
Content created by Egbert Rijke, Fredrik Bakke and Louis Wasserman.
Created on 2023-09-10.
Last modified on 2025-11-13.
module commutative-algebra.multiples-of-elements-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.universe-levels open import ring-theory.multiples-of-elements-rings
Idea
For any commutative ring A there
is a multiplication operation ℕ → A → A, which we write informally as
n x ↦ n · x. This operation is defined by
iteratively adding x with itself n
times.
Definition
Natural number multiples of elements of commutative rings
module _ {l : Level} (A : Commutative-Ring l) where multiple-Commutative-Ring : ℕ → type-Commutative-Ring A → type-Commutative-Ring A multiple-Commutative-Ring = multiple-Ring (ring-Commutative-Ring A) ap-multiple-Commutative-Ring : {m n : ℕ} {x y : type-Commutative-Ring A} → (m = n) → (x = y) → multiple-Commutative-Ring m x = multiple-Commutative-Ring n y ap-multiple-Commutative-Ring = ap-multiple-Ring (ring-Commutative-Ring A)
Properties
n · 0 = 0
module _ {l : Level} (A : Commutative-Ring l) where right-zero-law-multiple-Commutative-Ring : (n : ℕ) → multiple-Commutative-Ring A n (zero-Commutative-Ring A) = zero-Commutative-Ring A right-zero-law-multiple-Commutative-Ring = right-zero-law-multiple-Ring (ring-Commutative-Ring A)
0 · n = 0
module _ {l : Level} (A : Commutative-Ring l) where left-zero-law-multiple-Commutative-Ring : (r : type-Commutative-Ring A) → multiple-Commutative-Ring A 0 r = zero-Commutative-Ring A left-zero-law-multiple-Commutative-Ring _ = refl
Left unit law
module _ {l : Level} (R : Commutative-Ring l) where left-unit-law-multiple-Commutative-Ring : (x : type-Commutative-Ring R) → multiple-Commutative-Ring R 1 x = x left-unit-law-multiple-Commutative-Ring x = refl
(n + 1) · x = n · x + x
module _ {l : Level} (A : Commutative-Ring l) where multiple-succ-Commutative-Ring : (n : ℕ) (x : type-Commutative-Ring A) → multiple-Commutative-Ring A (succ-ℕ n) x = add-Commutative-Ring A (multiple-Commutative-Ring A n x) x multiple-succ-Commutative-Ring = multiple-succ-Ring (ring-Commutative-Ring A)
(n + 1) · x = x + n · x
module _ {l : Level} (A : Commutative-Ring l) where multiple-succ-Commutative-Ring' : (n : ℕ) (x : type-Commutative-Ring A) → multiple-Commutative-Ring A (succ-ℕ n) x = add-Commutative-Ring A x (multiple-Commutative-Ring A n x) multiple-succ-Commutative-Ring' = multiple-succ-Ring' (ring-Commutative-Ring A)
Multiples by sums of natural numbers are products of multiples
module _ {l : Level} (A : Commutative-Ring l) where right-distributive-multiple-add-Commutative-Ring : (m n : ℕ) {x : type-Commutative-Ring A} → multiple-Commutative-Ring A (m +ℕ n) x = add-Commutative-Ring A ( multiple-Commutative-Ring A m x) ( multiple-Commutative-Ring A n x) right-distributive-multiple-add-Commutative-Ring = right-distributive-multiple-add-Ring (ring-Commutative-Ring A)
Multiples distribute over the sum of x and y
module _ {l : Level} (A : Commutative-Ring l) where left-distributive-multiple-add-Commutative-Ring : (n : ℕ) {x y : type-Commutative-Ring A} → multiple-Commutative-Ring A n (add-Commutative-Ring A x y) = add-Commutative-Ring A ( multiple-Commutative-Ring A n x) ( multiple-Commutative-Ring A n y) left-distributive-multiple-add-Commutative-Ring = left-distributive-multiple-add-Ring (ring-Commutative-Ring A)
Multiples by products of natural numbers are iterated multiples
module _ {l : Level} (A : Commutative-Ring l) where multiple-mul-Commutative-Ring : (m n : ℕ) {x : type-Commutative-Ring A} → multiple-Commutative-Ring A (m *ℕ n) x = multiple-Commutative-Ring A n (multiple-Commutative-Ring A m x) multiple-mul-Commutative-Ring = multiple-mul-Ring (ring-Commutative-Ring A)
(n · x) * y = n · (x * y)
module _ {l : Level} (R : Commutative-Ring l) where left-mul-multiple-Commutative-Ring : (n : ℕ) (x y : type-Commutative-Ring R) → mul-Commutative-Ring R (multiple-Commutative-Ring R n x) y = multiple-Commutative-Ring R n (mul-Commutative-Ring R x y) left-mul-multiple-Commutative-Ring = left-mul-multiple-Ring (ring-Commutative-Ring R)
x * (n · y) * y = n · (x * y)
module _ {l : Level} (R : Commutative-Ring l) where right-mul-multiple-Commutative-Ring : (n : ℕ) (x y : type-Commutative-Ring R) → mul-Commutative-Ring R x (multiple-Commutative-Ring R n y) = multiple-Commutative-Ring R n (mul-Commutative-Ring R x y) right-mul-multiple-Commutative-Ring = right-mul-multiple-Ring (ring-Commutative-Ring R)
Recent changes
- 2025-11-13. Louis Wasserman. Standardize scalar multiplication on all sorts of rings (#1707).
- 2023-09-10. Egbert Rijke and Fredrik Bakke. Cyclic groups (#723).