Postcomposition of functions
Content created by Fredrik Bakke.
Created on 2024-01-14.
Last modified on 2024-03-20.
module foundation-core.postcomposition-functions where
Imports
open import foundation.universe-levels open import foundation-core.postcomposition-dependent-functions
Idea
Given a map f : X → Y
and a type A
, the
postcomposition function¶
f ∘ - : (A → X) → (A → Y)
is defined by λ h x → f (h x)
.
Definitions
module _ {l1 l2 l3 : Level} (A : UU l1) {X : UU l2} {Y : UU l3} where postcomp : (X → Y) → (A → X) → (A → Y) postcomp f = postcomp-Π A f
Recent changes
- 2024-03-20. Fredrik Bakke. Janitorial work on equivalences and embeddings (#1085).
- 2024-03-02. Fredrik Bakke. Factor out standard pullbacks (#1042).
- 2024-01-14. Fredrik Bakke. Exponentiating retracts of maps (#989).