Univalent type families
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Julian KG, fernabnor and louismntnu.
Created on 2022-03-03.
Last modified on 2024-04-25.
module foundation.univalent-type-families where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equality-dependent-pair-types open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-systems open import foundation.iterated-dependent-product-types open import foundation.propositions open import foundation.subuniverses open import foundation.transport-along-identifications open import foundation.univalence open import foundation.universal-property-identity-systems open import foundation.universe-levels open import foundation-core.embeddings open import foundation-core.function-types open import foundation-core.identity-types open import foundation-core.sections open import foundation-core.torsorial-type-families
Idea
A type family B
over A
is said to be
univalent¶ if the
map
equiv-tr B : x = y → B x ≃ B y
is an equivalence for every x y : A
. By
the univalence axiom, this is equivalent to the
type family B
being an embedding considered
as a map.
Definition
The predicate on type families of being univalent
is-univalent : {l1 l2 : Level} {A : UU l1} → (A → UU l2) → UU (l1 ⊔ l2) is-univalent {A = A} B = (x y : A) → is-equiv (λ (p : x = y) → equiv-tr B p) module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where is-prop-is-univalent : is-prop (is-univalent B) is-prop-is-univalent = is-prop-iterated-Π 2 (λ x y → is-property-is-equiv (equiv-tr B)) is-univalent-Prop : Prop (l1 ⊔ l2) pr1 is-univalent-Prop = is-univalent B pr2 is-univalent-Prop = is-prop-is-univalent
Univalent type families
univalent-type-family : {l1 : Level} (l2 : Level) (A : UU l1) → UU (l1 ⊔ lsuc l2) univalent-type-family l2 A = Σ (A → UU l2) is-univalent
Properties
The univalence axiom states that the identity family id : 𝒰 → 𝒰
is univalent
is-univalent-UU : (l : Level) → is-univalent (id {A = UU l}) is-univalent-UU l = univalence
Assuming the univalence axiom, type families are univalent if and only if they are embeddings as maps
Proof: We have the commuting triangle of maps
ap B
(x = y) -----> (B x = B y)
\ /
\ /
equiv-tr B \ / equiv-eq
∨ ∨
(B x ≃ B y)
where the right edge is an equivalence by the univalence axiom. Hence, the top map is an equivalence if and only if the left map is.
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} where abstract is-emb-is-univalent : is-univalent B → is-emb B is-emb-is-univalent U x y = is-equiv-top-map-triangle ( equiv-tr B) ( equiv-eq) ( ap B) ( λ where refl → refl) ( univalence (B x) (B y)) ( U x y) is-univalent-is-emb : is-emb B → is-univalent B is-univalent-is-emb is-emb-B x y = is-equiv-left-map-triangle ( equiv-tr B) ( equiv-eq) ( ap B) ( λ where refl → refl) ( is-emb-B x y) ( univalence (B x) (B y))
Univalent type families satisfy equivalence induction
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (U : is-univalent B) where is-torsorial-fam-equiv-is-univalent : {x : A} → is-torsorial (λ y → B x ≃ B y) is-torsorial-fam-equiv-is-univalent {x} = fundamental-theorem-id' (λ y → equiv-tr B) (U x) dependent-universal-property-identity-system-fam-equiv-is-univalent : {x : A} → dependent-universal-property-identity-system (λ y → B x ≃ B y) id-equiv dependent-universal-property-identity-system-fam-equiv-is-univalent {x} = dependent-universal-property-identity-system-is-torsorial ( id-equiv) ( is-torsorial-fam-equiv-is-univalent {x})
Inclusions of subuniverses into the universe are univalent
Note. This proof relies on essential use of the univalence axiom.
module _ {l1 l2 : Level} (S : subuniverse l1 l2) where is-univalent-inclusion-subuniverse : is-univalent (inclusion-subuniverse S) is-univalent-inclusion-subuniverse = is-univalent-is-emb (is-emb-inclusion-subuniverse S)
See also
- Preunivalent type families
- Transport-split type families:
By a corollary of
the fundamental theorem of identity types,
equiv-tr B
is a fiberwise equivalence as soon as it admits a fiberwise section.
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-02-06. Fredrik Bakke. Redefine
equiv-eq
asequiv-tr id
(#1020). - 2024-01-31. Fredrik Bakke and Egbert Rijke. Transport-split and preunivalent type families (#1013).
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).