The negation isometry on real numbers
Content created by malarbol.
Created on 2025-05-05.
Last modified on 2025-05-05.
{-# OPTIONS --lossy-unification #-} module real-numbers.isometry-negation-real-numbers where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.negation-real-numbers
Idea
Negation of real numbers is an isometry of the metric space of real numbers.
Definitions
Negation of a real number preserves neighborhoods
module _ {l1 : Level} where neg-neighborhood-leq-ℝ : (d : ℚ⁺) (x y : ℝ l1) → is-in-neighborhood-leq-ℝ l1 d x y → is-in-neighborhood-leq-ℝ l1 d (neg-ℝ x) (neg-ℝ y) neg-neighborhood-leq-ℝ d x y H = neighborhood-real-bound-each-leq-ℝ ( d) ( neg-ℝ x) ( neg-ℝ y) ( reverses-lower-neighborhood-leq-neg-ℝ ( d) ( y) ( x) ( right-real-bound-neighborhood-leq-ℝ d x y H)) ( reverses-lower-neighborhood-leq-neg-ℝ ( d) ( x) ( y) ( left-real-bound-neighborhood-leq-ℝ d x y H))
Negation on the real numbers is an isometry
module _ {l1 : Level} where is-isometry-neg-ℝ : is-isometry-Metric-Space ( metric-space-leq-ℝ l1) ( metric-space-leq-ℝ l1) ( neg-ℝ) is-isometry-neg-ℝ d x y = ( neg-neighborhood-leq-ℝ d x y) , ( ( binary-tr ( is-in-neighborhood-leq-ℝ l1 d) ( neg-neg-ℝ x) ( neg-neg-ℝ y)) ∘ ( neg-neighborhood-leq-ℝ ( d) ( neg-ℝ x) ( neg-ℝ y))) isometry-neg-ℝ : isometry-Metric-Space ( metric-space-leq-ℝ l1) ( metric-space-leq-ℝ l1) isometry-neg-ℝ = (neg-ℝ , is-isometry-neg-ℝ)
Recent changes
- 2025-05-05. malarbol. Metric properties of real negation, absolute value, addition and maximum (#1398).