The negation isometry on real numbers
Content created by Louis Wasserman and malarbol.
Created on 2025-05-05.
Last modified on 2025-11-15.
{-# OPTIONS --lossy-unification #-} module real-numbers.isometry-negation-real-numbers where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-functions-metric-spaces open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.inequalities-addition-and-subtraction-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.rational-real-numbers
Idea
Negation of real numbers is an isometry of the metric space of real numbers.
Definitions
Negation of real numbers reverses lower neighborhoods
module _ {l1 l2 : Level} (d : ℚ⁺) (x : ℝ l1) (y : ℝ l2) where reverses-lower-neighborhood-neg-ℝ : leq-ℝ x (y +ℝ real-ℚ⁺ d) → leq-ℝ (neg-ℝ y) (neg-ℝ x +ℝ real-ℚ⁺ d) reverses-lower-neighborhood-neg-ℝ x≤y+d = tr ( leq-ℝ (neg-ℝ y)) ( ( distributive-neg-add-ℝ x ((neg-ℝ ∘ real-ℚ ∘ rational-ℚ⁺) d)) ∙ ( ap (add-ℝ (neg-ℝ x)) (neg-neg-ℝ (real-ℚ⁺ d)))) ( neg-leq-ℝ ( leq-transpose-right-add-ℝ ( x) ( y) ( real-ℚ⁺ d) ( x≤y+d)))
Negation of a real number preserves neighborhoods
module _ {l1 : Level} where abstract neg-neighborhood-ℝ : (d : ℚ⁺) (x y : ℝ l1) → neighborhood-ℝ l1 d x y → neighborhood-ℝ l1 d (neg-ℝ x) (neg-ℝ y) neg-neighborhood-ℝ d x y H = neighborhood-real-bound-each-leq-ℝ ( d) ( neg-ℝ x) ( neg-ℝ y) ( reverses-lower-neighborhood-neg-ℝ ( d) ( y) ( x) ( right-leq-real-bound-neighborhood-ℝ d x y H)) ( reverses-lower-neighborhood-neg-ℝ ( d) ( x) ( y) ( left-leq-real-bound-neighborhood-ℝ d x y H))
Negation on the real numbers is an isometry
module _ {l1 : Level} where abstract is-isometry-neg-ℝ : is-isometry-Metric-Space ( metric-space-ℝ l1) ( metric-space-ℝ l1) ( neg-ℝ) is-isometry-neg-ℝ d x y = ( neg-neighborhood-ℝ d x y) , ( ( binary-tr ( neighborhood-ℝ l1 d) ( neg-neg-ℝ x) ( neg-neg-ℝ y)) ∘ ( neg-neighborhood-ℝ ( d) ( neg-ℝ x) ( neg-ℝ y))) isometry-neg-ℝ : isometry-Metric-Space ( metric-space-ℝ l1) ( metric-space-ℝ l1) isometry-neg-ℝ = (neg-ℝ , is-isometry-neg-ℝ)
Negation on the real numbers is short
abstract is-short-neg-ℝ : {l : Level} → is-short-function-Metric-Space ( metric-space-ℝ l) ( metric-space-ℝ l) ( neg-ℝ) is-short-neg-ℝ = is-short-is-isometry-Metric-Space ( metric-space-ℝ _) ( metric-space-ℝ _) ( neg-ℝ) ( is-isometry-neg-ℝ)
Recent changes
- 2025-11-15. Louis Wasserman. Every point in a proper closed interval in the real numbers is an accumulation point (#1679).
- 2025-11-09. Louis Wasserman. Cleanups in real numbers (#1675).
- 2025-09-02. Louis Wasserman. Opacify real numbers (#1521).
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).
- 2025-05-05. malarbol. Metric properties of real negation, absolute value, addition and maximum (#1398).