Large function monoids
Content created by Louis Wasserman.
Created on 2025-11-16.
Last modified on 2025-11-16.
module group-theory.large-function-monoids where
Imports
open import foundation.function-extensionality open import foundation.function-large-similarity-relations open import foundation.universe-levels open import group-theory.large-function-semigroups open import group-theory.large-monoids
Idea
Given a large monoid M and an arbitrary type
A, A → M forms a large monoid.
Definition
module _ {l1 : Level} {α : Level → Level} {β : Level → Level → Level} (A : UU l1) (M : Large-Monoid α β) where function-Large-Monoid : Large-Monoid (λ l → l1 ⊔ α l) (λ l2 l3 → l1 ⊔ β l2 l3) large-semigroup-Large-Monoid function-Large-Monoid = function-Large-Semigroup A (large-semigroup-Large-Monoid M) large-similarity-relation-Large-Monoid function-Large-Monoid = function-Large-Similarity-Relation ( A) ( large-similarity-relation-Large-Monoid M) raise-Large-Monoid function-Large-Monoid l f a = raise-Large-Monoid M l (f a) sim-raise-Large-Monoid function-Large-Monoid l2 f a = sim-raise-Large-Monoid M l2 (f a) preserves-sim-mul-Large-Monoid function-Large-Monoid f f' f~f' g g' g~g' a = preserves-sim-mul-Large-Monoid M (f a) (f' a) (f~f' a) (g a) (g' a) (g~g' a) unit-Large-Monoid function-Large-Monoid a = unit-Large-Monoid M left-unit-law-mul-Large-Monoid function-Large-Monoid f = eq-htpy (λ a → left-unit-law-mul-Large-Monoid M (f a)) right-unit-law-mul-Large-Monoid function-Large-Monoid f = eq-htpy (λ a → right-unit-law-mul-Large-Monoid M (f a))
Recent changes
- 2025-11-16. Louis Wasserman. Large function commutative rings (#1719).