Anodyne maps
Content created by Fredrik Bakke.
Created on 2025-07-15.
Last modified on 2025-07-15.
module orthogonal-factorization-systems.anodyne-maps where
Imports
open import foundation.equivalences-arrows open import foundation.function-types open import foundation.functoriality-cartesian-product-types open import foundation.functoriality-coproduct-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.universe-levels open import orthogonal-factorization-systems.orthogonal-maps open import synthetic-homotopy-theory.cocartesian-morphisms-arrows
Idea
A map is said to be anodyne¶ with respect to a map , or -anodyne, if every map that is orthogonal to is also orthogonal to .
Definitions
The predicate of being anodyne with respect to a map
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) (j : C → D) where is-anodyne-map-Level : (l5 l6 : Level) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ lsuc l5 ⊔ lsuc l6) is-anodyne-map-Level l5 l6 = {X : UU l5} {Y : UU l6} (g : X → Y) → is-orthogonal f g → is-orthogonal j g is-anodyne-map : UUω is-anodyne-map = {l5 l6 : Level} → is-anodyne-map-Level l5 l6
Properties
Anodyne maps are closed under homotopies
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} (f : A → B) {j i : C → D} where is-anodyne-map-htpy : j ~ i → is-anodyne-map f j → is-anodyne-map f i is-anodyne-map-htpy K J g H = is-orthogonal-htpy-left j g K (J g H)
Anodyne maps are closed under equivalences of maps
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {C' : UU l5} {D' : UU l6} (f : A → B) {j : C → D} {j' : C' → D'} where is-anodyne-map-equiv-arrow : equiv-arrow j j' → is-anodyne-map f j → is-anodyne-map f j' is-anodyne-map-equiv-arrow α J g H = is-orthogonal-left-equiv-arrow α g (J g H)
Anodyne maps are closed under retracts of maps
This remains to be formalized.
Anodyne maps compose
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {E : UU l5} (f : A → B) (j : C → D) (i : D → E) where is-anodyne-map-comp : is-anodyne-map f j → is-anodyne-map f i → is-anodyne-map f (i ∘ j) is-anodyne-map-comp J I g H = is-orthogonal-left-comp j i g (J g H) (I g H)
Cancellation property for anodyne maps
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {E : UU l5} (f : A → B) (j : C → D) (i : D → E) where is-anodyne-map-left-factor : is-anodyne-map f j → is-anodyne-map f (i ∘ j) → is-anodyne-map f i is-anodyne-map-left-factor J IJ g H = is-orthogonal-left-left-factor j i g (J g H) (IJ g H)
Anodyne maps are closed under dependent sums
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {I : UU l3} {C : I → UU l4} {D : I → UU l5} (f : A → B) (j : (i : I) → C i → D i) where is-anodyne-map-tot : ((i : I) → is-anodyne-map f (j i)) → is-anodyne-map f (tot j) is-anodyne-map-tot J g H = is-orthogonal-left-tot j g (λ i → J i g H)
Anodyne maps are closed under products
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {E : UU l5} {F : UU l6} (f : A → B) (j : C → D) (i : E → F) where is-anodyne-map-map-product : is-anodyne-map f j → is-anodyne-map f i → is-anodyne-map f (map-product j i) is-anodyne-map-map-product J I g H = is-orthogonal-left-product j i g (J g H) (I g H)
Anodyne maps are closed under coproducts
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {E : UU l5} {F : UU l6} (f : A → B) (j : C → D) (i : E → F) where is-anodyne-map-map-coproduct : is-anodyne-map f j → is-anodyne-map f i → is-anodyne-map f (map-coproduct j i) is-anodyne-map-map-coproduct J I g H = is-orthogonal-left-coproduct j i g (J g H) (I g H)
Anodyne maps are closed under cobase change
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {E : UU l5} {F : UU l6} (f : A → B) (j : C → D) (i : E → F) where is-anodyne-map-cobase-change : cocartesian-hom-arrow j i → is-anodyne-map f j → is-anodyne-map f i is-anodyne-map-cobase-change α J g H = is-orthogonal-left-cobase-change j i g α (J g H)
Anodyne maps are closed under pushout-products
This remains to be formalized.
Recent changes
- 2025-07-15. Fredrik Bakke. Anodyne maps (#1361).