The identity modality
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-06-08.
Last modified on 2023-11-24.
module orthogonal-factorization-systems.identity-modality where
Imports
open import foundation.equivalences open import foundation.function-types open import foundation.universe-levels open import orthogonal-factorization-systems.local-types open import orthogonal-factorization-systems.modal-operators open import orthogonal-factorization-systems.uniquely-eliminating-modalities
Idea
The identity operation on types is trivially a higher modality.
Definition
operator-id-modality : (l : Level) → operator-modality l l operator-id-modality l = id unit-id-modality : {l : Level} → unit-modality (operator-id-modality l) unit-id-modality = id
Properties
The identity modality is a uniquely eliminating modality
is-uniquely-eliminating-modality-id-modality : {l : Level} → is-uniquely-eliminating-modality (unit-id-modality {l}) is-uniquely-eliminating-modality-id-modality {l} P = is-local-dependent-type-is-equiv ( unit-id-modality) ( is-equiv-id) ( operator-id-modality l ∘ P)
Recent changes
- 2023-11-24. Fredrik Bakke. Modal type theory (#701).
- 2023-09-11. Fredrik Bakke and Egbert Rijke. Some computations for different notions of equivalence (#711).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-08. Fredrik Bakke. Examples of modalities and various fixes (#639).