Transporting commutative ring structures along isomorphisms of abelian groups
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-10.
Last modified on 2023-10-19.
module commutative-algebra.transporting-commutative-ring-structure-isomorphisms-abelian-groups where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.homomorphisms-commutative-rings open import commutative-algebra.isomorphisms-commutative-rings open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.isomorphisms-abelian-groups open import group-theory.semigroups open import ring-theory.homomorphisms-rings open import ring-theory.rings open import ring-theory.transporting-ring-structure-along-isomorphisms-abelian-groups
Idea
If A
is a commutative ring and B
is an abelian group equipped with an
isomorphism A ≅ B
from the
additive abelian group of A
to B
, then the multiplicative structure of A
can be transported along the isomorphism to obtain a ring structure on B
.
Note that this structure can be transported by univalence. However, we will give explicit definitions, since univalence is not strictly necessary to obtain this transported ring structure.
Definitions
Transporting the multiplicative structure of a commutative ring along an isomorphism of abelian groups
module _ {l1 l2 : Level} (A : Commutative-Ring l1) (B : Ab l2) (f : iso-Ab (ab-Commutative-Ring A) B) where ring-transport-commutative-ring-structure-iso-Ab : Ring l2 ring-transport-commutative-ring-structure-iso-Ab = transport-ring-structure-iso-Ab (ring-Commutative-Ring A) B f one-transport-commutative-ring-structure-iso-Ab : type-Ab B one-transport-commutative-ring-structure-iso-Ab = one-transport-ring-structure-iso-Ab (ring-Commutative-Ring A) B f mul-transport-commutative-ring-structure-iso-Ab : (x y : type-Ab B) → type-Ab B mul-transport-commutative-ring-structure-iso-Ab = mul-transport-ring-structure-iso-Ab (ring-Commutative-Ring A) B f private one = one-transport-commutative-ring-structure-iso-Ab mul = mul-transport-commutative-ring-structure-iso-Ab map-f = map-iso-Ab (ab-Commutative-Ring A) B f map-inv-f = map-inv-iso-Ab (ab-Commutative-Ring A) B f associative-mul-transport-commutative-ring-structure-iso-Ab : (x y z : type-Ab B) → mul (mul x y) z = mul x (mul y z) associative-mul-transport-commutative-ring-structure-iso-Ab = associative-mul-transport-ring-structure-iso-Ab ( ring-Commutative-Ring A) ( B) ( f) left-unit-law-mul-transport-commutative-ring-structure-iso-Ab : (x : type-Ab B) → mul one x = x left-unit-law-mul-transport-commutative-ring-structure-iso-Ab = left-unit-law-mul-transport-ring-structure-iso-Ab ( ring-Commutative-Ring A) ( B) ( f) right-unit-law-mul-transport-commutative-ring-structure-iso-Ab : (x : type-Ab B) → mul x one = x right-unit-law-mul-transport-commutative-ring-structure-iso-Ab = right-unit-law-mul-transport-ring-structure-iso-Ab ( ring-Commutative-Ring A) ( B) ( f) left-distributive-mul-add-transport-commutative-ring-structure-iso-Ab : (x y z : type-Ab B) → mul x (add-Ab B y z) = add-Ab B (mul x y) (mul x z) left-distributive-mul-add-transport-commutative-ring-structure-iso-Ab = left-distributive-mul-add-transport-ring-structure-iso-Ab ( ring-Commutative-Ring A) ( B) ( f) right-distributive-mul-add-transport-commutative-ring-structure-iso-Ab : (x y z : type-Ab B) → mul (add-Ab B x y) z = add-Ab B (mul x z) (mul y z) right-distributive-mul-add-transport-commutative-ring-structure-iso-Ab = right-distributive-mul-add-transport-ring-structure-iso-Ab ( ring-Commutative-Ring A) ( B) ( f) commutative-mul-transport-commutative-ring-structure-iso-Ab : (x y : type-Ab B) → mul x y = mul y x commutative-mul-transport-commutative-ring-structure-iso-Ab x y = ap map-f (commutative-mul-Commutative-Ring A _ _) transport-commutative-ring-structure-iso-Ab : Commutative-Ring l2 pr1 transport-commutative-ring-structure-iso-Ab = ring-transport-commutative-ring-structure-iso-Ab pr2 transport-commutative-ring-structure-iso-Ab = commutative-mul-transport-commutative-ring-structure-iso-Ab preserves-mul-transport-commutative-ring-structure-iso-Ab : preserves-mul-hom-Ab ( ring-Commutative-Ring A) ( ring-transport-commutative-ring-structure-iso-Ab) ( hom-iso-Ab (ab-Commutative-Ring A) B f) preserves-mul-transport-commutative-ring-structure-iso-Ab = preserves-mul-transport-ring-structure-iso-Ab ( ring-Commutative-Ring A) ( B) ( f) hom-iso-transport-commutative-ring-structure-iso-Ab : hom-Commutative-Ring A transport-commutative-ring-structure-iso-Ab hom-iso-transport-commutative-ring-structure-iso-Ab = hom-iso-transport-ring-structure-iso-Ab ( ring-Commutative-Ring A) ( B) ( f) is-iso-iso-transport-commutative-ring-structure-iso-Ab : is-iso-Commutative-Ring ( A) ( transport-commutative-ring-structure-iso-Ab) ( hom-iso-transport-commutative-ring-structure-iso-Ab) is-iso-iso-transport-commutative-ring-structure-iso-Ab = is-iso-iso-transport-ring-structure-iso-Ab ( ring-Commutative-Ring A) ( B) ( f) iso-transport-commutative-ring-structure-iso-Ab : iso-Commutative-Ring A transport-commutative-ring-structure-iso-Ab iso-transport-commutative-ring-structure-iso-Ab = iso-transport-ring-structure-iso-Ab ( ring-Commutative-Ring A) ( B) ( f)
Recent changes
- 2023-10-19. Egbert Rijke. Characteristic subgroups (#863).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-10. Egbert Rijke and Fredrik Bakke. Cyclic groups (#723).