Alternating concrete groups
Content created by Jonathan Prieto-Cubides, Fredrik Bakke and Egbert Rijke.
Created on 2022-09-22.
Last modified on 2025-10-31.
module finite-group-theory.alternating-concrete-groups where
Imports
open import elementary-number-theory.natural-numbers open import finite-group-theory.cartier-delooping-sign-homomorphism open import finite-group-theory.finite-type-groups open import foundation.universe-levels open import group-theory.concrete-groups open import group-theory.kernels-homomorphisms-concrete-groups
Idea
The concrete alternating groups¶ are the kernels of the concrete sign homomorphism.
Definition
module _ (n : ℕ) where alternating-Concrete-Group : Concrete-Group (lsuc (lsuc lzero)) alternating-Concrete-Group = concrete-group-kernel-hom-Concrete-Group ( Type-With-Cardinality-ℕ-Concrete-Group lzero n) ( Type-With-Cardinality-ℕ-Concrete-Group (lsuc lzero) 2) ( cartier-delooping-sign n)
External links
- Alternating group at Wikidata
Recent changes
- 2025-10-31. Fredrik Bakke. chore: Concepts in
finite-group-theory(#1656). - 2025-02-14. Fredrik Bakke. Rename
UU-FintoType-With-Cardinality-ℕ(#1316). - 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).