Dependent binary homotopies
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-26.
Last modified on 2023-09-26.
module foundation.dependent-binary-homotopies where
Imports
open import foundation.binary-homotopies open import foundation.universe-levels open import foundation-core.dependent-identifications
Idea
Consider a binary homotopy H : f ~ g
between
two functions f g : (x : A) (y : B x) → C x y
. Furthermore, consider a type
family D : (x : A) (y : B x) (z : C x y) → 𝒰
and two functions
f' : (x : A) (y : B x) → D x y (f x y)
g' : (x : A) (y : B x) → D x y (g x y)
A dependent binary homotopy from f'
to g'
over H
is a family of
dependent identifications from
f' x y
to g' x y
over H x y
.
Definitions
Dependent homotopies
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} (D : (x : A) (y : B x) (z : C x y) → UU l4) {f g : (x : A) (y : B x) → C x y} (H : binary-htpy f g) where dependent-binary-homotopy : ((x : A) (y : B x) → D x y (f x y)) → ((x : A) (y : B x) → D x y (g x y)) → UU (l1 ⊔ l2 ⊔ l4) dependent-binary-homotopy f' g' = (x : A) (y : B x) → dependent-identification (D x y) (H x y) (f' x y) (g' x y)
The reflexive dependent binary homotopy
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} {C : (x : A) → B x → UU l3} (D : (x : A) (y : B x) (z : C x y) → UU l4) {f : (x : A) (y : B x) → C x y} where refl-dependent-binary-homotopy : {f' : (x : A) (y : B x) → D x y (f x y)} → dependent-binary-homotopy D (refl-binary-htpy f) f' f' refl-dependent-binary-homotopy {f'} = refl-binary-htpy f'
Recent changes
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).