Dependent binary homotopies

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-09-26.
Last modified on 2023-09-26.

module foundation.dependent-binary-homotopies where
Imports
open import foundation.binary-homotopies
open import foundation.universe-levels

open import foundation-core.dependent-identifications

Idea

Consider a binary homotopy H : f ~ g between two functions f g : (x : A) (y : B x) → C x y. Furthermore, consider a type family D : (x : A) (y : B x) (z : C x y) → 𝒰 and two functions

  f' : (x : A) (y : B x) → D x y (f x y)
  g' : (x : A) (y : B x) → D x y (g x y)

A dependent binary homotopy from f' to g' over H is a family of dependent identifications from f' x y to g' x y over H x y.

Definitions

Dependent homotopies

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : A  UU l2} {C : (x : A)  B x  UU l3}
  (D : (x : A) (y : B x) (z : C x y)  UU l4)
  {f g : (x : A) (y : B x)  C x y} (H : binary-htpy f g)
  where

  dependent-binary-homotopy :
    ((x : A) (y : B x)  D x y (f x y)) 
    ((x : A) (y : B x)  D x y (g x y))  UU (l1  l2  l4)
  dependent-binary-homotopy f' g' =
    (x : A) (y : B x) 
    dependent-identification (D x y) (H x y) (f' x y) (g' x y)

The reflexive dependent binary homotopy

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : A  UU l2} {C : (x : A)  B x  UU l3}
  (D : (x : A) (y : B x) (z : C x y)  UU l4)
  {f : (x : A) (y : B x)  C x y}
  where

  refl-dependent-binary-homotopy :
    {f' : (x : A) (y : B x)  D x y (f x y)} 
    dependent-binary-homotopy D (refl-binary-htpy f) f' f'
  refl-dependent-binary-homotopy {f'} = refl-binary-htpy f'

Recent changes