Vertical composition of spans of spans
Content created by Fredrik Bakke.
Created on 2025-01-03.
Last modified on 2025-01-03.
module foundation.vertical-composition-spans-of-spans where
Imports
open import foundation.commuting-triangles-of-maps open import foundation.composition-spans open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.equivalences-arrows open import foundation.equivalences-spans open import foundation.homotopies open import foundation.identity-types open import foundation.morphisms-arrows open import foundation.morphisms-spans open import foundation.pullbacks open import foundation.spans open import foundation.spans-of-spans open import foundation.standard-pullbacks open import foundation.type-arithmetic-standard-pullbacks open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.function-types
Idea
Given three spans F
, G
and H
from A
to B
, a
span of spans α
from F
to G
and a span of
spans β
from G
to H
F₀
/ ↑ \
/ α₀ \
∨ ↓ ∨
A <--- G₀---> B,
∧ ↑ ∧
\ β₀ /
\ ↓ /
H₀
then we may
vertically compose¶
the two spans of spans to obtain a span of spans β ∘ α
from F
to H
. The
underlying span of the vertical composite is given by the composition of the
underlying spans.
Definitions
Vertical composition of spans of spans
module _ {l1 l2 l3 l4 l5 l6 l7 : Level} {A : UU l1} {B : UU l2} (F : span l3 A B) (G : span l4 A B) (H : span l5 A B) (β : span-of-spans l6 G H) (α : span-of-spans l7 F G) where spanning-type-vertical-comp-span-of-spans : UU (l4 ⊔ l6 ⊔ l7) spanning-type-vertical-comp-span-of-spans = spanning-type-comp-span ( span-span-of-spans G H β) ( span-span-of-spans F G α) left-map-vertical-comp-span-of-spans : spanning-type-vertical-comp-span-of-spans → spanning-type-span F left-map-vertical-comp-span-of-spans = left-map-comp-span ( span-span-of-spans G H β) ( span-span-of-spans F G α) right-map-vertical-comp-span-of-spans : spanning-type-vertical-comp-span-of-spans → spanning-type-span H right-map-vertical-comp-span-of-spans = right-map-comp-span ( span-span-of-spans G H β) ( span-span-of-spans F G α) span-vertical-comp-span-of-spans : span (l4 ⊔ l6 ⊔ l7) (spanning-type-span F) (spanning-type-span H) span-vertical-comp-span-of-spans = comp-span (span-span-of-spans G H β) (span-span-of-spans F G α) coherence-left-vertical-comp-span-of-spans : coherence-left-span-of-spans F H span-vertical-comp-span-of-spans coherence-left-vertical-comp-span-of-spans = homotopy-reasoning ( left-map-span H ∘ right-map-span-of-spans G H β ∘ horizontal-map-standard-pullback) ~ ( left-map-span G ∘ left-map-span-of-spans G H β ∘ horizontal-map-standard-pullback) by coh-left-span-of-spans G H β ·r horizontal-map-standard-pullback ~ ( left-map-span G ∘ right-map-span-of-spans F G α ∘ vertical-map-standard-pullback) by left-map-span G ·l inv-htpy coherence-square-standard-pullback ~ ( left-map-span F ∘ left-map-span-of-spans F G α ∘ vertical-map-standard-pullback) by coh-left-span-of-spans F G α ·r vertical-map-standard-pullback coherence-right-vertical-comp-span-of-spans : coherence-right-span-of-spans F H span-vertical-comp-span-of-spans coherence-right-vertical-comp-span-of-spans = homotopy-reasoning ( right-map-span H ∘ right-map-span-of-spans G H β ∘ horizontal-map-standard-pullback) ~ ( right-map-span G ∘ left-map-span-of-spans G H β ∘ horizontal-map-standard-pullback) by coh-right-span-of-spans G H β ·r horizontal-map-standard-pullback ~ ( right-map-span G ∘ right-map-span-of-spans F G α ∘ vertical-map-standard-pullback) by right-map-span G ·l inv-htpy coherence-square-standard-pullback ~ ( right-map-span F ∘ left-map-span-of-spans F G α ∘ vertical-map-standard-pullback) by coh-right-span-of-spans F G α ·r vertical-map-standard-pullback coherence-vertical-comp-span-of-spans : coherence-span-of-spans F H span-vertical-comp-span-of-spans coherence-vertical-comp-span-of-spans = coherence-left-vertical-comp-span-of-spans , coherence-right-vertical-comp-span-of-spans vertical-comp-span-of-spans : span-of-spans (l4 ⊔ l6 ⊔ l7) F H vertical-comp-span-of-spans = span-vertical-comp-span-of-spans , coherence-vertical-comp-span-of-spans
Properties
Associativity of vertical composition of spans of spans
module _ {l1 l2 l3 l4 l5 l6 l7 l8 l9 : Level} {A : UU l1} {B : UU l2} (F : span l3 A B) (G : span l4 A B) (H : span l5 A B) (I : span l6 A B) (γ : span-of-spans l7 H I) (β : span-of-spans l8 G H) (α : span-of-spans l9 F G) where essentially-associative-spanning-type-vertical-comp-span-of-spans : spanning-type-vertical-comp-span-of-spans F G I ( vertical-comp-span-of-spans G H I γ β) ( α) ≃ spanning-type-vertical-comp-span-of-spans F H I ( γ) ( vertical-comp-span-of-spans F G H β α) essentially-associative-spanning-type-vertical-comp-span-of-spans = essentially-associative-spanning-type-comp-span ( span-span-of-spans H I γ) ( span-span-of-spans G H β) ( span-span-of-spans F G α) essentially-associative-span-vertical-comp-span-of-spans : equiv-span ( span-vertical-comp-span-of-spans F G I ( vertical-comp-span-of-spans G H I γ β) ( α)) ( span-vertical-comp-span-of-spans F H I ( γ) ( vertical-comp-span-of-spans F G H β α)) essentially-associative-span-vertical-comp-span-of-spans = essentially-associative-comp-span ( span-span-of-spans H I γ) ( span-span-of-spans G H β) ( span-span-of-spans F G α)
It remains to show that this equivalence is part of an equivalence of spans of spans.
Recent changes
- 2025-01-03. Fredrik Bakke. Composition operations on spans of spans (#1231).