The universal property of pullbacks

Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Victor Blanchi.

Created on 2022-05-18.
Last modified on 2024-01-28.

module foundation-core.universal-property-pullbacks where
Imports
open import foundation.action-on-identifications-functions
open import foundation.cones-over-cospan-diagrams
open import foundation.dependent-pair-types
open import foundation.postcomposition-functions
open import foundation.universe-levels

open import foundation-core.contractible-maps
open import foundation-core.contractible-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.identity-types

Definition

The universal property of pullbacks

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
  (f : A  X) (g : B  X) {C : UU l4} (c : cone f g C)
  where

  universal-property-pullback : UUω
  universal-property-pullback =
    {l : Level} (C' : UU l)  is-equiv (cone-map f g c {C'})

module _
  {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
  (f : A  X) (g : B  X) {C : UU l4} (c : cone f g C)
  where

  map-universal-property-pullback :
    universal-property-pullback f g c 
    {C' : UU l5} (c' : cone f g C')  C'  C
  map-universal-property-pullback up-c {C'} =
    map-inv-is-equiv (up-c C')

  compute-map-universal-property-pullback :
    (up-c : universal-property-pullback f g c) 
    {C' : UU l5} (c' : cone f g C') 
    cone-map f g c (map-universal-property-pullback up-c c')  c'
  compute-map-universal-property-pullback up-c {C'} =
    is-section-map-inv-is-equiv (up-c C')

Properties

3-for-2 property of pullbacks

Given two cones c and c' over a common cospan f : A → X ← B : g, and a map between them h such that the diagram

              h
          C ----> C'
        /   \   /   \
      /      / \      \
    /   /          \    \
   v v                 v v
  A --------> X <-------- B
        f           g

is coherent, then if two out of the three conditions

  • c is a pullback cone
  • c' is a pullback cone
  • h is an equivalence

hold, then so does the third.

module _
  {l1 l2 l3 l4 l5 : Level}
  {A : UU l1} {B : UU l2} {X : UU l3} {C : UU l4} {C' : UU l5}
  {f : A  X} {g : B  X} (c : cone f g C) (c' : cone f g C')
  (h : C'  C) (KLM : htpy-cone f g (cone-map f g c h) c')
  where

  inv-triangle-cone-cone :
    {l6 : Level} (D : UU l6) 
    cone-map f g c  postcomp D h ~ cone-map f g c'
  inv-triangle-cone-cone D k =
    ap
      ( λ t  cone-map f g t k)
      ( eq-htpy-cone f g (cone-map f g c h) c' KLM)

  triangle-cone-cone :
    {l6 : Level} (D : UU l6)  cone-map f g c' ~ cone-map f g c  postcomp D h
  triangle-cone-cone D k = inv (inv-triangle-cone-cone D k)

  abstract
    is-equiv-up-pullback-up-pullback :
      universal-property-pullback f g c 
      universal-property-pullback f g c' 
      is-equiv h
    is-equiv-up-pullback-up-pullback up up' =
      is-equiv-is-equiv-postcomp h
        ( λ D 
          is-equiv-top-map-triangle
            ( cone-map f g c')
            ( cone-map f g c)
            ( postcomp D h)
            ( triangle-cone-cone D)
            ( up D)
            ( up' D))

  abstract
    up-pullback-up-pullback-is-equiv :
      is-equiv h 
      universal-property-pullback f g c 
      universal-property-pullback f g c'
    up-pullback-up-pullback-is-equiv is-equiv-h up D =
      is-equiv-left-map-triangle
        ( cone-map f g c')
        ( cone-map f g c)
        ( postcomp D h)
        ( triangle-cone-cone D)
        ( is-equiv-postcomp-is-equiv h is-equiv-h D)
        ( up D)

  abstract
    up-pullback-is-equiv-up-pullback :
      universal-property-pullback f g c' 
      is-equiv h 
      universal-property-pullback f g c
    up-pullback-is-equiv-up-pullback up' is-equiv-h D =
      is-equiv-right-map-triangle
        ( cone-map f g c')
        ( cone-map f g c)
        ( postcomp D h)
        ( triangle-cone-cone D)
        ( up' D)
        ( is-equiv-postcomp-is-equiv h is-equiv-h D)

Uniqueness of maps obtained via the universal property of pullbacks

module _
  {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3}
  (f : A  X) (g : B  X) {C : UU l4} (c : cone f g C)
  where

  abstract
    uniqueness-universal-property-pullback :
      universal-property-pullback f g c 
      {l5 : Level} (C' : UU l5) (c' : cone f g C') 
      is-contr (Σ (C'  C)  h  htpy-cone f g (cone-map f g c h) c'))
    uniqueness-universal-property-pullback up C' c' =
      is-contr-equiv'
        ( Σ (C'  C)  h  cone-map f g c h  c'))
        ( equiv-tot  h  extensionality-cone f g (cone-map f g c h) c'))
        ( is-contr-map-is-equiv (up C') c')

Table of files about pullbacks

The following table lists files that are about pullbacks as a general concept.

ConceptFile
Cospan diagramsfoundation.cospans
Morphisms of cospan diagramsfoundation.morphisms-cospans
Cones over cospan diagramsfoundation.cones-over-cospan-diagrams
The universal property of pullbacks (foundation-core)foundation-core.universal-property-pullbacks
The universal property of pullbacks (foundation)foundation.universal-property-pullbacks
The universal property of fiber productsfoundation.universal-property-fiber-products
Standard pullbacksfoundation.standard-pullbacks
Pullbacks (foundation-core)foundation-core.pullbacks
Pullbacks (foundation)foundation.pullbacks
Functoriality of pullbacksfoundation.functoriality-pullbacks
Cartesian morphisms of arrowsfoundation.cartesian-morphisms-arrows
Dependent products of pullbacksfoundation.dependent-products-pullbacks
Dependent sums of pullbacksfoundation.dependent-sums-pullbacks
Products of pullbacksfoundation.products-pullbacks
Coroducts of pullbacksfoundation.coproducts-pullbacks
Postcomposition of pullbacksfoundation.postcomposition-pullbacks
Pullbacks of subtypesfoundation.pullbacks-subtypes
The pullback-homorthogonal-factorization-systems.pullback-hom
Functoriality of the pullback-homorthogonal-factorization-systems.functoriality-pullback-hom
Pullbacks in precategoriescategory-theory.pullbacks-in-precategories

Recent changes