Strict inequality on nonnegative rational numbers
Content created by Louis Wasserman.
Created on 2025-10-03.
Last modified on 2025-10-03.
module elementary-number-theory.strict-inequality-nonnegative-rational-numbers where
Imports
open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.dependent-pair-types open import foundation.propositions open import foundation.universe-levels
Idea
The standard strict ordering¶ on the nonnegative rational numbers is inherited from the standard strict ordering on rational numbers.
Definition
le-prop-ℚ⁰⁺ : (p q : ℚ⁰⁺) → Prop lzero le-prop-ℚ⁰⁺ p q = le-ℚ-Prop (rational-ℚ⁰⁺ p) (rational-ℚ⁰⁺ q) le-ℚ⁰⁺ : (p q : ℚ⁰⁺) → UU lzero le-ℚ⁰⁺ p q = type-Prop (le-prop-ℚ⁰⁺ p q)
Properties
Zero is less than positive rational numbers as nonnegative rational numbers
abstract le-zero-nonnegative-ℚ⁰⁺ : (q : ℚ⁺) → le-ℚ⁰⁺ zero-ℚ⁰⁺ (nonnegative-ℚ⁺ q) le-zero-nonnegative-ℚ⁰⁺ (q , pos-q) = le-zero-is-positive-ℚ q pos-q
Recent changes
- 2025-10-03. Louis Wasserman. Split out operations on nonnegative rational numbers (#1559).