Totally bounded subsets of the real numbers
Content created by Louis Wasserman.
Created on 2025-09-04.
Last modified on 2025-09-11.
{-# OPTIONS --lossy-unification #-} module real-numbers.totally-bounded-subsets-real-numbers where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.subspaces-metric-spaces open import metric-spaces.totally-bounded-metric-spaces open import real-numbers.dedekind-real-numbers open import real-numbers.isometry-negation-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.subsets-real-numbers
Idea
A subset of the real numbers is totally bounded¶ if it is totally bounded as a subspace of the metric space of real numbers.
Definition
module _ {l1 l2 : Level} (l3 : Level) (S : subset-ℝ l1 l2) where modulus-of-total-boundedness-subset-ℝ : UU (l1 ⊔ lsuc l2 ⊔ lsuc l3) modulus-of-total-boundedness-subset-ℝ = modulus-of-total-boundedness-Metric-Space l3 (metric-space-subset-ℝ S) is-totally-bounded-prop-subset-ℝ : Prop (l1 ⊔ lsuc l2 ⊔ lsuc l3) is-totally-bounded-prop-subset-ℝ = is-totally-bounded-prop-Metric-Space l3 (metric-space-subset-ℝ S) is-totally-bounded-subset-ℝ : UU (l1 ⊔ lsuc l2 ⊔ lsuc l3) is-totally-bounded-subset-ℝ = type-Prop is-totally-bounded-prop-subset-ℝ totally-bounded-subset-ℝ : (l1 l2 l3 : Level) → UU (lsuc l1 ⊔ lsuc l2 ⊔ lsuc l3) totally-bounded-subset-ℝ l1 l2 l3 = type-subtype (is-totally-bounded-prop-subset-ℝ {l1} {l2} l3) module _ {l1 l2 l3 : Level} (S : totally-bounded-subset-ℝ l1 l2 l3) where subset-totally-bounded-subset-ℝ : subset-ℝ l1 l2 subset-totally-bounded-subset-ℝ = pr1 S metric-space-totally-bounded-subset-ℝ : Metric-Space (l1 ⊔ lsuc l2) l2 metric-space-totally-bounded-subset-ℝ = metric-space-subset-ℝ subset-totally-bounded-subset-ℝ is-totally-bounded-totally-bounded-subset-ℝ : is-totally-bounded-subset-ℝ l3 subset-totally-bounded-subset-ℝ is-totally-bounded-totally-bounded-subset-ℝ = pr2 S is-inhabited-totally-bounded-subset-ℝ : UU (l1 ⊔ lsuc l2) is-inhabited-totally-bounded-subset-ℝ = is-inhabited-subset-ℝ subset-totally-bounded-subset-ℝ
Properties
The elementwise negation of a totally bounded subset of ℝ is totally bounded
module _ {l1 l2 l3 : Level} (S : totally-bounded-subset-ℝ l1 l2 l3) where abstract is-totally-bounded-neg-totally-bounded-subset-ℝ : is-totally-bounded-subset-ℝ ( l1 ⊔ lsuc l2 ⊔ l3) ( neg-subset-ℝ (subset-totally-bounded-subset-ℝ S)) is-totally-bounded-neg-totally-bounded-subset-ℝ = preserves-is-totally-bounded-isometric-equiv-Metric-Space _ _ ( is-totally-bounded-im-isometry-is-totally-bounded-Metric-Space ( metric-space-totally-bounded-subset-ℝ S) ( metric-space-ℝ l2) ( is-totally-bounded-totally-bounded-subset-ℝ S) ( comp-isometry-Metric-Space ( metric-space-totally-bounded-subset-ℝ S) ( metric-space-ℝ l2) ( metric-space-ℝ l2) ( isometry-neg-ℝ) ( isometry-inclusion-subspace-Metric-Space ( metric-space-ℝ l2) ( subset-totally-bounded-subset-ℝ S)))) ( isometric-equiv-neg-subset-im-neg-subset-ℝ ( subset-totally-bounded-subset-ℝ S)) neg-totally-bounded-subset-ℝ : totally-bounded-subset-ℝ l1 l2 (l1 ⊔ lsuc l2 ⊔ l3) neg-totally-bounded-subset-ℝ = ( neg-subset-ℝ (subset-totally-bounded-subset-ℝ S) , is-totally-bounded-neg-totally-bounded-subset-ℝ)
External links
- Totally bounded space at Wikidata
Recent changes
- 2025-09-11. Louis Wasserman. Inhabited totally bounded subspaces of metric spaces (#1542).
- 2025-09-06. Louis Wasserman. Inhabited finitely enumerable subtypes (#1530).
- 2025-09-04. Louis Wasserman. Suprema and infima of totally bounded subsets of the reals (#1510).