The local ring of complex numbers
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2025-11-26.
module complex-numbers.local-ring-of-complex-numbers where
Imports
open import commutative-algebra.local-commutative-rings open import complex-numbers.addition-complex-numbers open import complex-numbers.addition-nonzero-complex-numbers open import complex-numbers.large-ring-of-complex-numbers open import complex-numbers.multiplicative-inverses-nonzero-complex-numbers open import complex-numbers.nonzero-complex-numbers open import foundation.dependent-pair-types open import foundation.functoriality-disjunction open import foundation.universe-levels
Idea
The commutative ring of complex numbers is local.
Definition
is-local-commutative-ring-ℂ : (l : Level) → is-local-Commutative-Ring (commutative-ring-ℂ l) is-local-commutative-ring-ℂ l z w is-invertible-z+w = map-disjunction ( is-invertible-is-nonzero-ℂ z) ( is-invertible-is-nonzero-ℂ w) ( is-nonzero-either-is-nonzero-add-ℂ ( z) ( w) ( is-nonzero-is-invertible-ℂ ( z +ℂ w) ( is-invertible-z+w))) local-commutative-ring-ℂ : (l : Level) → Local-Commutative-Ring (lsuc l) local-commutative-ring-ℂ l = ( commutative-ring-ℂ l , is-local-commutative-ring-ℂ l)
Recent changes
- 2025-11-26. Louis Wasserman. Complex vector spaces (#1692).