The dependent universal property of sequential colimits
Content created by Vojtěch Štěpančík, Egbert Rijke and Fredrik Bakke.
Created on 2023-10-23.
Last modified on 2024-04-25.
module synthetic-homotopy-theory.dependent-universal-property-sequential-colimits where
Imports
open import foundation.action-on-identifications-functions open import foundation.commuting-triangles-of-maps open import foundation.contractible-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fibers-of-maps open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.precomposition-dependent-functions open import foundation.precomposition-functions open import foundation.subtype-identity-principle open import foundation.universal-property-equivalences open import foundation.universe-levels open import synthetic-homotopy-theory.cocones-under-sequential-diagrams open import synthetic-homotopy-theory.coforks open import synthetic-homotopy-theory.coforks-cocones-under-sequential-diagrams open import synthetic-homotopy-theory.dependent-cocones-under-sequential-diagrams open import synthetic-homotopy-theory.dependent-coforks open import synthetic-homotopy-theory.dependent-universal-property-coequalizers open import synthetic-homotopy-theory.sequential-diagrams open import synthetic-homotopy-theory.universal-property-coequalizers open import synthetic-homotopy-theory.universal-property-sequential-colimits
Idea
Given a sequential diagram
(A, a)
, consider a
cocone under it
c
with vertex X
. The dependent universal property of sequential colimits
is the statement that the dependent cocone postcomposition map
dependent-cocone-map-sequential-diagram :
((x : X) → P x) → dependent-cocone-sequential-diagram P
is an equivalence.
Definitions
The dependent universal property of sequential colimits
module _ { l1 l2 : Level} {A : sequential-diagram l1} {X : UU l2} ( c : cocone-sequential-diagram A X) where dependent-universal-property-sequential-colimit : UUω dependent-universal-property-sequential-colimit = {l : Level} (P : X → UU l) → is-equiv (dependent-cocone-map-sequential-diagram c P)
The map induced by the dependent universal property of sequential colimits
module _ { l1 l2 l3 : Level} {A : sequential-diagram l1} {X : UU l2} { c : cocone-sequential-diagram A X} {P : X → UU l3} ( dup-c : dependent-universal-property-sequential-colimit c) where equiv-dependent-universal-property-sequential-colimit : ((x : X) → P x) ≃ dependent-cocone-sequential-diagram c P pr1 equiv-dependent-universal-property-sequential-colimit = dependent-cocone-map-sequential-diagram c P pr2 equiv-dependent-universal-property-sequential-colimit = dup-c P map-dependent-universal-property-sequential-colimit : dependent-cocone-sequential-diagram c P → ( x : X) → P x map-dependent-universal-property-sequential-colimit = map-inv-is-equiv (dup-c P)
Properties
The mediating map obtained by the dependent universal property is unique
module _ { l1 l2 l3 : Level} {A : sequential-diagram l1} {X : UU l2} { c : cocone-sequential-diagram A X} {P : X → UU l3} ( dup-c : dependent-universal-property-sequential-colimit c) ( d : dependent-cocone-sequential-diagram c P) where htpy-dependent-cocone-dependent-universal-property-sequential-colimit : htpy-dependent-cocone-sequential-diagram P ( dependent-cocone-map-sequential-diagram c P ( map-dependent-universal-property-sequential-colimit ( dup-c) ( d))) ( d) htpy-dependent-cocone-dependent-universal-property-sequential-colimit = htpy-eq-dependent-cocone-sequential-diagram P ( dependent-cocone-map-sequential-diagram c P ( map-dependent-universal-property-sequential-colimit ( dup-c) ( d))) ( d) ( is-section-map-inv-is-equiv (dup-c P) d) abstract uniqueness-dependent-universal-property-sequential-colimit : is-contr ( Σ ( ( x : X) → P x) ( λ h → htpy-dependent-cocone-sequential-diagram P ( dependent-cocone-map-sequential-diagram c P h) ( d))) uniqueness-dependent-universal-property-sequential-colimit = is-contr-equiv' ( fiber (dependent-cocone-map-sequential-diagram c P) d) ( equiv-tot ( λ h → extensionality-dependent-cocone-sequential-diagram P ( dependent-cocone-map-sequential-diagram c P h) ( d))) ( is-contr-map-is-equiv (dup-c P) d)
Correspondence between dependent universal properties of sequential colimits and coequalizers
A cocone under a sequential diagram has the dependent universal property of sequential colimits if and only if the corresponding cofork has the dependent universal property of coequalizers.
module _ { l1 l2 : Level} {A : sequential-diagram l1} {X : UU l2} ( c : cocone-sequential-diagram A X) where dependent-universal-property-sequential-colimit-dependent-universal-property-coequalizer : dependent-universal-property-coequalizer ( double-arrow-sequential-diagram A) ( cofork-cocone-sequential-diagram c) → dependent-universal-property-sequential-colimit c dependent-universal-property-sequential-colimit-dependent-universal-property-coequalizer ( dup-coequalizer) ( P) = is-equiv-left-map-triangle ( dependent-cocone-map-sequential-diagram c P) ( dependent-cocone-sequential-diagram-dependent-cofork P) ( dependent-cofork-map ( double-arrow-sequential-diagram A) ( cofork-cocone-sequential-diagram c)) ( triangle-dependent-cocone-sequential-diagram-dependent-cofork P) ( dup-coequalizer P) ( is-equiv-dependent-cocone-sequential-diagram-dependent-cofork P) dependent-universal-property-coequalizer-dependent-universal-property-sequential-colimit : dependent-universal-property-sequential-colimit c → dependent-universal-property-coequalizer ( double-arrow-sequential-diagram A) ( cofork-cocone-sequential-diagram c) dependent-universal-property-coequalizer-dependent-universal-property-sequential-colimit ( dup-c) ( P) = is-equiv-top-map-triangle ( dependent-cocone-map-sequential-diagram c P) ( dependent-cocone-sequential-diagram-dependent-cofork P) ( dependent-cofork-map ( double-arrow-sequential-diagram A) ( cofork-cocone-sequential-diagram c)) ( triangle-dependent-cocone-sequential-diagram-dependent-cofork P) ( is-equiv-dependent-cocone-sequential-diagram-dependent-cofork P) ( dup-c P)
The nondependent and dependent universal properties of sequential colimits are logically equivalent
module _ { l1 l2 : Level} {A : sequential-diagram l1} {X : UU l2} ( c : cocone-sequential-diagram A X) where universal-property-dependent-universal-property-sequential-colimit : dependent-universal-property-sequential-colimit c → universal-property-sequential-colimit c universal-property-dependent-universal-property-sequential-colimit ( dup-c) ( Y) = is-equiv-left-map-triangle ( cocone-map-sequential-diagram c) ( map-compute-dependent-cocone-sequential-diagram-constant-family Y) ( dependent-cocone-map-sequential-diagram c (λ _ → Y)) ( triangle-compute-dependent-cocone-sequential-diagram-constant-family ( Y)) ( dup-c (λ _ → Y)) ( is-equiv-map-equiv ( compute-dependent-cocone-sequential-diagram-constant-family Y)) dependent-universal-property-universal-property-sequential-colimit : universal-property-sequential-colimit c → dependent-universal-property-sequential-colimit c dependent-universal-property-universal-property-sequential-colimit ( up-sequential-diagram) = dependent-universal-property-sequential-colimit-dependent-universal-property-coequalizer ( c) ( dependent-universal-property-universal-property-coequalizer ( double-arrow-sequential-diagram A) ( cofork-cocone-sequential-diagram c) ( universal-property-coequalizer-universal-property-sequential-colimit ( c) ( up-sequential-diagram)))
The 3-for-2 property of the dependent universal property of sequential colimits
Given two cocones under a sequential diagram, one of which has the dependent universal property of sequential colimits, and a map between their vertices, we prove that the other has the dependent universal property if and only if the map is an equivalence.
module _ { l1 l2 l3 : Level} {A : sequential-diagram l1} {X : UU l2} {Y : UU l3} ( c : cocone-sequential-diagram A X) ( c' : cocone-sequential-diagram A Y) ( h : X → Y) ( H : htpy-cocone-sequential-diagram (cocone-map-sequential-diagram c h) c') where abstract is-equiv-dependent-universal-property-sequential-colimit-dependent-universal-property-sequential-colimit : dependent-universal-property-sequential-colimit c → dependent-universal-property-sequential-colimit c' → is-equiv h is-equiv-dependent-universal-property-sequential-colimit-dependent-universal-property-sequential-colimit ( dup-c) ( dup-c') = is-equiv-universal-property-sequential-colimit-universal-property-sequential-colimit ( c) ( c') ( h) ( H) ( universal-property-dependent-universal-property-sequential-colimit c ( dup-c)) ( universal-property-dependent-universal-property-sequential-colimit ( c') ( dup-c')) dependent-universal-property-sequential-colimit-is-equiv-dependent-universal-property-sequential-colimit : dependent-universal-property-sequential-colimit c → is-equiv h → dependent-universal-property-sequential-colimit c' dependent-universal-property-sequential-colimit-is-equiv-dependent-universal-property-sequential-colimit ( dup-c) (is-equiv-h) = dependent-universal-property-universal-property-sequential-colimit c' ( universal-property-sequential-colimit-is-equiv-universal-property-sequential-colimit ( c) ( c') ( h) ( H) ( universal-property-dependent-universal-property-sequential-colimit c ( dup-c)) ( is-equiv-h)) dependent-universal-property-sequential-colimit-dependent-universal-property-sequential-colimit-is-equiv : is-equiv h → dependent-universal-property-sequential-colimit c' → dependent-universal-property-sequential-colimit c dependent-universal-property-sequential-colimit-dependent-universal-property-sequential-colimit-is-equiv ( is-equiv-h) ( dup-c') = dependent-universal-property-universal-property-sequential-colimit c ( universal-property-sequential-colimit-universal-property-sequential-colimit-is-equiv ( c) ( c') ( h) ( H) ( is-equiv-h) ( universal-property-dependent-universal-property-sequential-colimit ( c') ( dup-c')))
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Universal properties of colimits quantify over all universe levels (#1126).
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).
- 2024-04-06. Vojtěch Štěpančík. Rebase infrastructure for coequalizers to double arrows (#1098).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-16. Vojtěch Štěpančík. Refactor functoriality and various infrastructure for sequential colimits (#978).