Equivalences between synthetic categories
Content created by Ivan Kobe.
Created on 2024-09-25.
Last modified on 2024-09-25.
{-# OPTIONS --guardedness #-} module synthetic-category-theory.equivalences-synthetic-categories where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.universe-levels open import structured-types.globular-types open import synthetic-category-theory.retractions-synthetic-categories open import synthetic-category-theory.sections-synthetic-categories open import synthetic-category-theory.synthetic-categories
Idea
A functor f: A → B of synthetic categories is an equivalence¶ if it has a section and a retraction.
The predicate of being an equivalence
module _ {l : Level} where is-equiv-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) (f : functor-Synthetic-Category-Theory κ C D) → UU l is-equiv-Synthetic-Category-Theory κ μ ι f = ( section-Synthetic-Category-Theory κ μ ι f) × ( retraction-Synthetic-Category-Theory κ μ ι f)
The components of a proof of being an equivalence
module _ {l : Level} where section-is-equiv-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C D : category-Synthetic-Category-Theory κ} {f : functor-Synthetic-Category-Theory κ C D} → is-equiv-Synthetic-Category-Theory κ μ ι f → section-Synthetic-Category-Theory κ μ ι f section-is-equiv-Synthetic-Category-Theory κ μ ι = pr1 retraction-is-equiv-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C D : category-Synthetic-Category-Theory κ} {f : functor-Synthetic-Category-Theory κ C D} → is-equiv-Synthetic-Category-Theory κ μ ι f → retraction-Synthetic-Category-Theory κ μ ι f retraction-is-equiv-Synthetic-Category-Theory κ μ ι = pr2
The type of equivalences between two given synthetic categories
module _ {l : Level} where equiv-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) (C D : category-Synthetic-Category-Theory κ) → UU l equiv-Synthetic-Category-Theory κ μ ι C D = Σ ( functor-Synthetic-Category-Theory κ C D) ( is-equiv-Synthetic-Category-Theory κ μ ι)
The components of an equivalence of synthetic categories
module _ {l : Level} where functor-equiv-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) → equiv-Synthetic-Category-Theory κ μ ι C D → functor-Synthetic-Category-Theory κ C D functor-equiv-Synthetic-Category-Theory κ μ ι = pr1 is-equiv-functor-equiv-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) {C D : category-Synthetic-Category-Theory κ} (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) → (H : equiv-Synthetic-Category-Theory κ μ ι C D) → is-equiv-Synthetic-Category-Theory κ μ ι ( functor-equiv-Synthetic-Category-Theory κ μ ι H) is-equiv-functor-equiv-Synthetic-Category-Theory κ μ ι = pr2 section-functor-equiv-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C D : category-Synthetic-Category-Theory κ} (H : equiv-Synthetic-Category-Theory κ μ ι C D) → section-Synthetic-Category-Theory κ μ ι ( functor-equiv-Synthetic-Category-Theory κ μ ι H) section-functor-equiv-Synthetic-Category-Theory κ μ ι H = section-is-equiv-Synthetic-Category-Theory κ μ ι ( is-equiv-functor-equiv-Synthetic-Category-Theory κ μ ι H) functor-section-functor-equiv-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C D : category-Synthetic-Category-Theory κ} (H : equiv-Synthetic-Category-Theory κ μ ι C D) → functor-Synthetic-Category-Theory κ D C functor-section-functor-equiv-Synthetic-Category-Theory κ μ ι H = functor-section-Synthetic-Category-Theory κ μ ι ( section-functor-equiv-Synthetic-Category-Theory κ μ ι H) retraction-functor-equiv-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C D : category-Synthetic-Category-Theory κ} (H : equiv-Synthetic-Category-Theory κ μ ι C D) → retraction-Synthetic-Category-Theory κ μ ι ( functor-equiv-Synthetic-Category-Theory κ μ ι H) retraction-functor-equiv-Synthetic-Category-Theory κ μ ι H = retraction-is-equiv-Synthetic-Category-Theory κ μ ι ( is-equiv-functor-equiv-Synthetic-Category-Theory κ μ ι H) functor-retraction-functor-equiv-Synthetic-Category-Theory : (κ : language-Synthetic-Category-Theory l) (μ : composition-Synthetic-Category-Theory κ) (ι : identity-Synthetic-Category-Theory κ) {C D : category-Synthetic-Category-Theory κ} (H : equiv-Synthetic-Category-Theory κ μ ι C D) → functor-Synthetic-Category-Theory κ D C functor-retraction-functor-equiv-Synthetic-Category-Theory κ μ ι H = functor-retraction-Synthetic-Category-Theory κ μ ι ( retraction-functor-equiv-Synthetic-Category-Theory κ μ ι H)
Recent changes
- 2024-09-25. Ivan Kobe. Pullbacks of synthetic categories (#1183).