Conjugation of pointed types
Content created by Egbert Rijke.
Created on 2023-07-19.
Last modified on 2024-03-13.
module structured-types.conjugation-pointed-types where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.universe-levels open import structured-types.pointed-homotopies open import structured-types.pointed-maps open import structured-types.pointed-types open import synthetic-homotopy-theory.conjugation-loops open import synthetic-homotopy-theory.functoriality-loop-spaces open import synthetic-homotopy-theory.loop-spaces
Idea
Conjugation on a pointed type (B,b)
is
defined as a family of pointed maps
conj u p : (B,b) →∗ (B,u)
indexed by u : B
and p : b = u
, such that
conj b ω
acts on the loop space
Ω (B , b)
by conjugation, i.e., it maps a loop α : b = b
to the loop
ω⁻¹αω
.
Definition
module _ {l : Level} (B : Pointed-Type l) where map-conjugation-Pointed-Type : {u : type-Pointed-Type B} (p : point-Pointed-Type B = u) → type-Pointed-Type B → type-Pointed-Type B map-conjugation-Pointed-Type refl = id preserves-point-conjugation-Pointed-Type : {u : type-Pointed-Type B} (p : point-Pointed-Type B = u) → map-conjugation-Pointed-Type p (point-Pointed-Type B) = u preserves-point-conjugation-Pointed-Type refl = refl conjugation-Pointed-Type : {u : type-Pointed-Type B} (p : point-Pointed-Type B = u) → B →∗ (type-Pointed-Type B , u) pr1 (conjugation-Pointed-Type p) = map-conjugation-Pointed-Type p pr2 (conjugation-Pointed-Type p) = preserves-point-conjugation-Pointed-Type p
Properties
The conjugation map on a pointed type acts on loop spaces by conjugation
module _ {l : Level} {B : Pointed-Type l} where action-on-loops-conjugation-Pointed-Type : {u : type-Pointed-Type B} (p : point-Pointed-Type B = u) → Ω B →∗ Ω (type-Pointed-Type B , u) action-on-loops-conjugation-Pointed-Type p = pointed-map-Ω (conjugation-Pointed-Type B p) map-action-on-loops-conjugation-Pointed-Type : {u : type-Pointed-Type B} (p : point-Pointed-Type B = u) → type-Ω B → type-Ω (type-Pointed-Type B , u) map-action-on-loops-conjugation-Pointed-Type p = map-pointed-map ( action-on-loops-conjugation-Pointed-Type p) preserves-point-action-on-loops-conjugation-Pointed-Type : {u : type-Pointed-Type B} (p : point-Pointed-Type B = u) → map-action-on-loops-conjugation-Pointed-Type p refl = refl preserves-point-action-on-loops-conjugation-Pointed-Type p = preserves-point-pointed-map ( action-on-loops-conjugation-Pointed-Type p) compute-action-on-loops-conjugation-Pointed-Type' : {u : type-Pointed-Type B} (p : point-Pointed-Type B = u) → conjugation-Ω' p ~∗ action-on-loops-conjugation-Pointed-Type p pr1 (compute-action-on-loops-conjugation-Pointed-Type' refl) ω = inv (ap-id ω) pr2 (compute-action-on-loops-conjugation-Pointed-Type' refl) = refl compute-action-on-loops-conjugation-Pointed-Type : {u : type-Pointed-Type B} (p : point-Pointed-Type B = u) → conjugation-Ω p ~∗ action-on-loops-conjugation-Pointed-Type p compute-action-on-loops-conjugation-Pointed-Type p = concat-pointed-htpy ( compute-conjugation-Ω p) ( compute-action-on-loops-conjugation-Pointed-Type' p) htpy-compute-action-on-loops-conjugation-Pointed-Type : {u : type-Pointed-Type B} (p : point-Pointed-Type B = u) → map-conjugation-Ω p ~ map-action-on-loops-conjugation-Pointed-Type p htpy-compute-action-on-loops-conjugation-Pointed-Type p = pr1 (compute-action-on-loops-conjugation-Pointed-Type p)
Recent changes
- 2024-03-13. Egbert Rijke. Refactoring pointed types (#1056).
- 2023-07-19. Egbert Rijke. refactoring pointed maps (#682).
- 2023-07-19. Egbert Rijke. Conjugation on higher groups (#681).