Terms over signatures
Content created by Fredrik Bakke, Egbert Rijke and Fernando Chu.
Created on 2023-03-20.
Last modified on 2023-09-11.
module universal-algebra.terms-over-signatures where
Imports
open import elementary-number-theory.equality-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.unit-type open import foundation.universe-levels open import linear-algebra.functoriality-vectors open import linear-algebra.vectors open import lists.lists open import lists.lists-discrete-types open import universal-algebra.models-of-signatures open import universal-algebra.signatures
Idea
A term in a signature, is an abstract representation of a well formed expression which uses only variables and operations in the signature. For this particular formalization, we are using de Bruijn variables.
Definitions
Terms
module _ {l1 : Level} (Sg : signature l1) where data Term : UU l1 where var-Term : ℕ → Term op-Term : is-model Sg Term de-bruijn-variables-term : Term → list ℕ de-bruijn-variables-term-vec : {n : ℕ} → vec Term n → list ℕ de-bruijn-variables-term (var-Term x) = cons x nil de-bruijn-variables-term (op-Term f x) = de-bruijn-variables-term-vec x de-bruijn-variables-term-vec empty-vec = nil de-bruijn-variables-term-vec (x ∷ v) = union-list has-decidable-equality-ℕ (de-bruijn-variables-term x) (de-bruijn-variables-term-vec v) arity-term : Term → ℕ arity-term t = length-list (de-bruijn-variables-term t)
Assignment of variables
An assignment of variables, assigns each de Bruijn variable to an element in a type.
assignment : {l2 : Level} → (A : UU l2) → UU l2 assignment A = ℕ → A
Evaluation of terms
Given a model of a type A
and an assignment of variables, any term can be
evaluated to a concrete element of the type A
.
eval-term : {l2 : Level} → {A : UU l2} → is-model Sg A → assignment A → Term → A eval-vec : { l2 : Level} → {A : UU l2} {n : ℕ} → is-model Sg A → assignment A → vec Term n → vec A n eval-term m assign (var-Term n) = assign n eval-term m assign (op-Term f x) = m f (eval-vec m assign x) eval-vec m assign empty-vec = empty-vec eval-vec m assign (x ∷ v) = eval-term m assign x ∷ (eval-vec m assign v) eval-vec-map-vec-eval-term : { l2 : Level} {A : UU l2} {n : ℕ} → (m : is-model Sg A) → (assign : assignment A) → (v : vec Term n) → eval-vec m assign v = map-vec (eval-term m assign) v eval-vec-map-vec-eval-term m assign empty-vec = refl eval-vec-map-vec-eval-term m assign (x ∷ v) = ap (eval-term m assign x ∷_) (eval-vec-map-vec-eval-term m assign v)
Evaluation for constant terms
If a term t
uses no variables, then any model on a type A
assigns t
to an
element of A
.
eval-constant-term : { l2 : Level} {A : UU l2} → ( is-model Sg A) → ( t : Term) → (de-bruijn-variables-term t = nil) → A eval-constant-term-vec : { l2 : Level} {A : UU l2} {n : ℕ} → ( is-model Sg A) → ( v : vec Term n) → ( all-vec (λ t → is-nil-list (de-bruijn-variables-term t)) v) → vec A n eval-constant-term m (op-Term f x) p = m f (eval-constant-term-vec m x (all-vec-lemma x p)) where all-vec-lemma : { n : ℕ} ( v : vec Term n) → ( de-bruijn-variables-term-vec v = nil) → all-vec (λ t → is-nil-list (de-bruijn-variables-term t)) v all-vec-lemma empty-vec p = raise-star all-vec-lemma (x ∷ v) p = pair ( pr1 (is-nil-lemma p)) ( all-vec-lemma v (pr2 (is-nil-lemma p))) where is-nil-lemma = is-nil-union-is-nil-list ( has-decidable-equality-ℕ) ( de-bruijn-variables-term x) ( de-bruijn-variables-term-vec v) eval-constant-term-vec m empty-vec p = empty-vec eval-constant-term-vec m (x ∷ v) (p , p') = eval-constant-term m x p ∷ eval-constant-term-vec m v p'
The induced function by a term on a model
vec-assignment : {l2 : Level} {A : UU l2} → ℕ → (l : list ℕ) → vec A (succ-ℕ (length-list l)) → assignment A vec-assignment x nil (y ∷ empty-vec) n = y vec-assignment x (cons x' l) (y ∷ y' ∷ v) n with ( has-decidable-equality-ℕ x n) ... | inl p = y ... | inr p = vec-assignment x' l (y' ∷ v) n induced-function-term : {l2 : Level} → {A : UU l2} → is-model Sg A → (t : Term) → vec A (arity-term t) → A induced-function-term {l2} {A} m t v with ( has-decidable-equality-list has-decidable-equality-ℕ (de-bruijn-variables-term t) nil) ... | inl p = eval-constant-term m t p ... | inr p = eval-term m ( tr ( λ n → vec A n → assignment A) ( lenght-tail-is-nonnil-list (de-bruijn-variables-term t) p) ( vec-assignment ( head-is-nonnil-list (de-bruijn-variables-term t) p) ( tail-is-nonnil-list (de-bruijn-variables-term t) p)) ( v)) ( t) assignment-vec : {l2 : Level} {A : UU l2} → (l : list ℕ) → assignment A → vec A (length-list l) assignment-vec nil f = empty-vec assignment-vec (cons x l) f = f x ∷ assignment-vec l f
Translation of terms
translation-term : { l1 l2 : Level} → ( Sg1 : signature l1) → ( Sg2 : signature l2) → is-extension-signature Sg1 Sg2 → Term Sg2 → Term Sg1 translation-vec : { l1 l2 : Level} → ( Sg1 : signature l1) → ( Sg2 : signature l2) → { n : ℕ} → is-extension-signature Sg1 Sg2 → vec (Term Sg2) n → vec (Term Sg1) n translation-term Sg1 Sg2 ext (var-Term x) = var-Term x translation-term Sg1 Sg2 ext (op-Term f v) = op-Term (emb-extension-signature Sg1 Sg2 ext f) ( tr (vec (Term Sg1)) ( arity-preserved-extension-signature Sg1 Sg2 ext f) ( translation-vec Sg1 Sg2 ext v)) translation-vec Sg1 Sg2 ext empty-vec = empty-vec translation-vec Sg1 Sg2 ext (x ∷ v) = ( translation-term Sg1 Sg2 ext x) ∷ ( translation-vec Sg1 Sg2 ext v)
Recent changes
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-25. Fredrik Bakke. Fix alignment
where
blocks (#670). - 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).
- 2023-04-28. Fredrik Bakke. Miscellaneous refactoring and small additions (#579).