Interior closed intervals in the rational numbers
Content created by Louis Wasserman.
Created on 2025-10-07.
Last modified on 2025-10-08.
module elementary-number-theory.interior-closed-intervals-rational-numbers where
Imports
open import elementary-number-theory.closed-intervals-rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.propositions open import foundation.universe-levels
Idea
Given two
closed intervals of rational numbers
[a, b]
and [c, d]
, then [c, d]
is said to be
interior¶
to [a, b]
if a < c
and d < b
.
Definition
is-interior-prop-closed-interval-ℚ : closed-interval-ℚ → closed-interval-ℚ → Prop lzero is-interior-prop-closed-interval-ℚ ((x , y) , _) ((x' , y') , _) = le-ℚ-Prop x x' ∧ le-ℚ-Prop y' y is-interior-closed-interval-ℚ : closed-interval-ℚ → closed-interval-ℚ → UU lzero is-interior-closed-interval-ℚ [x,y] [x',y'] = type-Prop (is-interior-prop-closed-interval-ℚ [x,y] [x',y'])
Recent changes
- 2025-10-08. Fredrik Bakke. chore: Fix link warnings for closed intervals (#1574).
- 2025-10-07. Louis Wasserman. Multiplication of interior intervals in the rational numbers (#1561).