0
-acyclic maps
Content created by Tom de Jong.
Created on 2023-12-01.
Last modified on 2023-12-01.
module synthetic-homotopy-theory.0-acyclic-maps where
Imports
open import foundation.epimorphisms-with-respect-to-sets open import foundation.propositions open import foundation.surjective-maps open import foundation.truncation-levels open import foundation.universe-levels open import synthetic-homotopy-theory.truncated-acyclic-maps
Idea
A 0
-acyclic map is a map whose fibers
are 0
-acyclic types, meaning
that their suspension is
0
-connected.
We can characterize the 0
-acyclic maps as the
surjective maps.
Definition
The predicate of being a 0
-acyclic map
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-0-acyclic-map-Prop : (A → B) → Prop (l1 ⊔ l2) is-0-acyclic-map-Prop = is-truncated-acyclic-map-Prop (zero-𝕋) is-0-acyclic-map : (A → B) → UU (l1 ⊔ l2) is-0-acyclic-map f = type-Prop (is-0-acyclic-map-Prop f) is-prop-is-0-acyclic-map : (f : A → B) → is-prop (is-0-acyclic-map f) is-prop-is-0-acyclic-map f = is-prop-type-Prop (is-0-acyclic-map-Prop f)
Properties
A map is 0
-acyclic if and only if it is surjective
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where is-surjective-is-0-acyclic-map : is-0-acyclic-map f → is-surjective f is-surjective-is-0-acyclic-map ac = is-surjective-is-epimorphism-Set ( is-epimorphism-is-truncated-acyclic-map-Truncated-Type f ac) is-0-acyclic-map-is-surjective : is-surjective f → is-0-acyclic-map f is-0-acyclic-map-is-surjective s = is-truncated-acyclic-map-is-epimorphism-Truncated-Type f ( is-epimorphism-is-surjective-Set s)
See also
Recent changes
- 2023-12-01. Tom de Jong. A type is
1
-acyclic if and only if it is0
-connected (#956).