Morphisms of coalgebras over comonads on precategories
Content created by Ben Connors.
Created on 2025-06-21.
Last modified on 2025-06-21.
module category-theory.morphisms-coalgebras-comonads-on-precategories where
Imports
open import category-theory.coalgebras-comonads-on-precategories open import category-theory.commuting-squares-of-morphisms-in-precategories open import category-theory.comonads-on-precategories open import category-theory.precategories open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels
Idea
A
morphism¶
between
comonad coalgebras
a : A → TA
and b : B → TB
is a map f : A → B
such that Tf ∘ b = a ∘ f
.
Definitions
module _ {l1 l2 : Level} (C : Precategory l1 l2) (T : comonad-Precategory C) where coherence-morphism-coalgebra-comonad-Precategory : (f g : coalgebra-comonad-Precategory C T) → hom-Precategory C ( obj-coalgebra-comonad-Precategory C T f) ( obj-coalgebra-comonad-Precategory C T g) → UU l2 coherence-morphism-coalgebra-comonad-Precategory f g h = coherence-square-hom-Precategory C ( h) ( hom-coalgebra-comonad-Precategory C T f) ( hom-coalgebra-comonad-Precategory C T g) ( hom-endofunctor-comonad-Precategory C T h) morphism-coalgebra-comonad-Precategory : (f g : coalgebra-comonad-Precategory C T) → UU l2 morphism-coalgebra-comonad-Precategory f g = Σ ( hom-Precategory C ( obj-coalgebra-comonad-Precategory C T f) ( obj-coalgebra-comonad-Precategory C T g)) ( coherence-morphism-coalgebra-comonad-Precategory f g) hom-morphism-coalgebra-comonad-Precategory : (f g : coalgebra-comonad-Precategory C T) (h : morphism-coalgebra-comonad-Precategory f g) → hom-Precategory C ( obj-coalgebra-comonad-Precategory C T f) ( obj-coalgebra-comonad-Precategory C T g) hom-morphism-coalgebra-comonad-Precategory f g h = pr1 h bottom-hom-morphism-coalgebra-comonad-Precategory : (f g : coalgebra-comonad-Precategory C T) (h : morphism-coalgebra-comonad-Precategory f g) → hom-Precategory C ( obj-endofunctor-comonad-Precategory C T ( obj-coalgebra-comonad-Precategory C T f)) ( obj-endofunctor-comonad-Precategory C T ( obj-coalgebra-comonad-Precategory C T g)) bottom-hom-morphism-coalgebra-comonad-Precategory f g h = hom-endofunctor-comonad-Precategory C T ( hom-morphism-coalgebra-comonad-Precategory f g h) coh-hom-morphism-coalgebra-comonad-Precategory : (f g : coalgebra-comonad-Precategory C T) (h : morphism-coalgebra-comonad-Precategory f g) → coherence-square-hom-Precategory C ( hom-morphism-coalgebra-comonad-Precategory f g h) ( hom-coalgebra-comonad-Precategory C T f) ( hom-coalgebra-comonad-Precategory C T g) ( bottom-hom-morphism-coalgebra-comonad-Precategory f g h) coh-hom-morphism-coalgebra-comonad-Precategory f g h = pr2 h comp-morphism-coalgebra-comonad-Precategory : (a b c : coalgebra-comonad-Precategory C T) (g : morphism-coalgebra-comonad-Precategory b c) → (f : morphism-coalgebra-comonad-Precategory a b) → morphism-coalgebra-comonad-Precategory a c comp-morphism-coalgebra-comonad-Precategory a b c g f = ( comp-hom-Precategory C ( hom-morphism-coalgebra-comonad-Precategory b c g) ( hom-morphism-coalgebra-comonad-Precategory a b f)) , ( ap ( precomp-hom-Precategory C (hom-coalgebra-comonad-Precategory C T a) _) ( preserves-comp-endofunctor-comonad-Precategory C T _ _)) ∙ ( pasting-horizontal-coherence-square-hom-Precategory C ( hom-morphism-coalgebra-comonad-Precategory a b f) ( hom-morphism-coalgebra-comonad-Precategory b c g) ( hom-coalgebra-comonad-Precategory C T a) ( hom-coalgebra-comonad-Precategory C T b) ( hom-coalgebra-comonad-Precategory C T c) ( bottom-hom-morphism-coalgebra-comonad-Precategory a b f) ( bottom-hom-morphism-coalgebra-comonad-Precategory b c g) ( coh-hom-morphism-coalgebra-comonad-Precategory a b f) ( coh-hom-morphism-coalgebra-comonad-Precategory b c g)) is-set-morphism-coalgebra-comonad-Precategory : (f g : coalgebra-comonad-Precategory C T) → is-set (morphism-coalgebra-comonad-Precategory f g) is-set-morphism-coalgebra-comonad-Precategory f g = is-set-Σ ( is-set-hom-Precategory C _ _) ( λ hk → is-set-is-prop (is-set-hom-Precategory C _ _ _ _))
Recent changes
- 2025-06-21. Ben Connors. Dualize limits, right Kan extensions, and monads (#1442).