The category of functors and natural transformations from small to large categories
Content created by Fredrik Bakke.
Created on 2023-09-27.
Last modified on 2023-09-27.
module category-theory.category-of-functors-from-small-to-large-categories where
Imports
open import category-theory.categories open import category-theory.category-of-functors open import category-theory.functors-from-small-to-large-categories open import category-theory.functors-from-small-to-large-precategories open import category-theory.isomorphisms-in-large-precategories open import category-theory.isomorphisms-in-precategories open import category-theory.large-categories open import category-theory.large-precategories open import category-theory.natural-isomorphisms-functors-categories open import category-theory.natural-isomorphisms-functors-precategories open import category-theory.precategories open import category-theory.precategory-of-functors-from-small-to-large-precategories open import foundation.equivalences open import foundation.identity-types open import foundation.universe-levels
Idea
Functors from small categories to large categories and natural transformations between them form a large category whose identity map and composition structure are inherited pointwise from the codomain category. This is called the category of functors from small to large categories.
Lemmas
Extensionality of functors from small precategories to large categories
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) (is-large-category-D : is-large-category-Large-Precategory D) where equiv-natural-isomorphism-htpy-functor-is-large-category-Small-Large-Precategory : {γ : Level} (F G : functor-Small-Large-Precategory C D γ) → ( htpy-functor-Small-Large-Precategory C D F G) ≃ ( natural-isomorphism-Precategory C (precategory-Large-Precategory D γ) ( F) ( G)) equiv-natural-isomorphism-htpy-functor-is-large-category-Small-Large-Precategory { γ} F G = equiv-natural-isomorphism-htpy-functor-is-category-Precategory ( C) ( precategory-Large-Precategory D γ) ( is-category-is-large-category-Large-Precategory D is-large-category-D γ) ( F) ( G) extensionality-functor-is-category-Small-Large-Precategory : {γ : Level} (F G : functor-Small-Large-Precategory C D γ) → ( F = G) ≃ ( natural-isomorphism-Precategory C (precategory-Large-Precategory D γ) ( F) ( G)) extensionality-functor-is-category-Small-Large-Precategory F G = ( equiv-natural-isomorphism-htpy-functor-is-large-category-Small-Large-Precategory ( F) ( G)) ∘e ( equiv-htpy-eq-functor-Small-Large-Precategory C D F G)
When the codomain is a large category the functor large precategory is a large category
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) (is-large-category-D : is-large-category-Large-Precategory D) where abstract is-large-category-functor-large-precategory-is-large-category-Small-Large-Precategory : is-large-category-Large-Precategory ( functor-large-precategory-Small-Large-Precategory C D) is-large-category-functor-large-precategory-is-large-category-Small-Large-Precategory { γ} F G = is-equiv-htpy' ( iso-eq-Precategory ( functor-precategory-Small-Large-Precategory C D γ) ( F) ( G)) ( compute-iso-eq-Large-Precategory ( functor-large-precategory-Small-Large-Precategory C D) ( F) ( G)) ( is-category-functor-precategory-is-category-Precategory ( C) ( precategory-Large-Precategory D γ) ( is-category-is-large-category-Large-Precategory ( D) ( is-large-category-D) ( γ)) ( F) ( G))
Definition
The large category of functors from small to large categories
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Category l1 l2) (D : Large-Category α β) where functor-large-category-Small-Large-Category : Large-Category (λ l → l1 ⊔ l2 ⊔ α l ⊔ β l l) (λ l l' → l1 ⊔ l2 ⊔ β l l') large-precategory-Large-Category functor-large-category-Small-Large-Category = functor-large-precategory-Small-Large-Precategory ( precategory-Category C) ( large-precategory-Large-Category D) is-large-category-Large-Category functor-large-category-Small-Large-Category = is-large-category-functor-large-precategory-is-large-category-Small-Large-Precategory ( precategory-Category C) ( large-precategory-Large-Category D) ( is-large-category-Large-Category D) extensionality-functor-Small-Large-Category : {γ : Level} (F G : functor-Small-Large-Category C D γ) → (F = G) ≃ natural-isomorphism-Category C (category-Large-Category D γ) F G extensionality-functor-Small-Large-Category {γ} = extensionality-functor-Category C (category-Large-Category D γ) eq-natural-isomorphism-Small-Large-Category : {γ : Level} (F G : functor-Small-Large-Category C D γ) → natural-isomorphism-Category C (category-Large-Category D γ) F G → F = G eq-natural-isomorphism-Small-Large-Category F G = map-inv-equiv (extensionality-functor-Small-Large-Category F G)
The small categories of functors and natural transformations from small to large categories
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Category l1 l2) (D : Large-Category α β) where functor-category-Small-Large-Category : (l : Level) → Category (l1 ⊔ l2 ⊔ α l ⊔ β l l) (l1 ⊔ l2 ⊔ β l l) functor-category-Small-Large-Category = category-Large-Category (functor-large-category-Small-Large-Category C D)
Recent changes
- 2023-09-27. Fredrik Bakke. Presheaf categories (#801).