Subsets of algebras over commutative rings
Content created by Louis Wasserman.
Created on 2026-02-14.
Last modified on 2026-02-14.
module commutative-algebra.subsets-algebras-commutative-rings where
Imports
open import commutative-algebra.algebras-commutative-rings open import commutative-algebra.commutative-rings open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.subsets-left-modules-commutative-rings
Idea
A
subset¶
of an algebra A over a
commutative ring R is a
subset of the underlying type of A.
Definition
module _ {l1 l2 : Level} (l3 : Level) (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) where subset-algebra-Commutative-Ring : UU (l2 ⊔ lsuc l3) subset-algebra-Commutative-Ring = subtype l3 (type-algebra-Commutative-Ring R A)
Properties
The condition that a subset contains zero
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) where contains-zero-prop-subset-algebra-Commutative-Ring : subset-algebra-Commutative-Ring l3 R A → Prop l3 contains-zero-prop-subset-algebra-Commutative-Ring = contains-zero-prop-subset-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) contains-zero-subset-algebra-Commutative-Ring : subset-algebra-Commutative-Ring l3 R A → UU l3 contains-zero-subset-algebra-Commutative-Ring S = type-Prop (contains-zero-prop-subset-algebra-Commutative-Ring S)
The condition that a subset is closed under addition
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) where is-closed-under-addition-prop-subset-algebra-Commutative-Ring : subset-algebra-Commutative-Ring l3 R A → Prop (l2 ⊔ l3) is-closed-under-addition-prop-subset-algebra-Commutative-Ring = is-closed-under-addition-prop-subset-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) is-closed-under-addition-subset-algebra-Commutative-Ring : subset-algebra-Commutative-Ring l3 R A → UU (l2 ⊔ l3) is-closed-under-addition-subset-algebra-Commutative-Ring S = type-Prop (is-closed-under-addition-prop-subset-algebra-Commutative-Ring S)
The condition that a subset is closed under scalar multiplication
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) where is-closed-under-scalar-multiplication-prop-subset-algebra-Commutative-Ring : subset-algebra-Commutative-Ring l3 R A → Prop (l1 ⊔ l2 ⊔ l3) is-closed-under-scalar-multiplication-prop-subset-algebra-Commutative-Ring = is-closed-under-scalar-multiplication-prop-subset-left-module-Commutative-Ring ( R) ( left-module-algebra-Commutative-Ring R A) is-closed-under-scalar-multiplication-subset-algebra-Commutative-Ring : subset-algebra-Commutative-Ring l3 R A → UU (l1 ⊔ l2 ⊔ l3) is-closed-under-scalar-multiplication-subset-algebra-Commutative-Ring S = type-Prop ( is-closed-under-scalar-multiplication-prop-subset-algebra-Commutative-Ring ( S))
The condition that a subset is closed under multiplication
module _ {l1 l2 l3 : Level} (R : Commutative-Ring l1) (A : algebra-Commutative-Ring l2 R) where is-closed-under-multiplication-prop-subset-algebra-Commutative-Ring : subset-algebra-Commutative-Ring l3 R A → Prop (l2 ⊔ l3) is-closed-under-multiplication-prop-subset-algebra-Commutative-Ring S = Π-Prop ( type-algebra-Commutative-Ring R A) ( λ x → Π-Prop ( type-algebra-Commutative-Ring R A) ( λ y → hom-Prop ( S x) ( hom-Prop ( S y) ( S (mul-algebra-Commutative-Ring R A x y))))) is-closed-under-multiplication-subset-algebra-Commutative-Ring : subset-algebra-Commutative-Ring l3 R A → UU (l2 ⊔ l3) is-closed-under-multiplication-subset-algebra-Commutative-Ring S = type-Prop ( is-closed-under-multiplication-prop-subset-algebra-Commutative-Ring S)
Recent changes
- 2026-02-14. Louis Wasserman. Subalgebras over commutative rings (#1842).