Subsets of algebras over commutative rings

Content created by Louis Wasserman.

Created on 2026-02-14.
Last modified on 2026-02-14.

module commutative-algebra.subsets-algebras-commutative-rings where
Imports
open import commutative-algebra.algebras-commutative-rings
open import commutative-algebra.commutative-rings

open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import linear-algebra.subsets-left-modules-commutative-rings

Idea

A subset of an algebra A over a commutative ring R is a subset of the underlying type of A.

Definition

module _
  {l1 l2 : Level} (l3 : Level)
  (R : Commutative-Ring l1)
  (A : algebra-Commutative-Ring l2 R)
  where

  subset-algebra-Commutative-Ring : UU (l2  lsuc l3)
  subset-algebra-Commutative-Ring =
    subtype l3 (type-algebra-Commutative-Ring R A)

Properties

The condition that a subset contains zero

module _
  {l1 l2 l3 : Level}
  (R : Commutative-Ring l1)
  (A : algebra-Commutative-Ring l2 R)
  where

  contains-zero-prop-subset-algebra-Commutative-Ring :
    subset-algebra-Commutative-Ring l3 R A  Prop l3
  contains-zero-prop-subset-algebra-Commutative-Ring =
    contains-zero-prop-subset-left-module-Commutative-Ring
      ( R)
      ( left-module-algebra-Commutative-Ring R A)

  contains-zero-subset-algebra-Commutative-Ring :
    subset-algebra-Commutative-Ring l3 R A  UU l3
  contains-zero-subset-algebra-Commutative-Ring S =
    type-Prop (contains-zero-prop-subset-algebra-Commutative-Ring S)

The condition that a subset is closed under addition

module _
  {l1 l2 l3 : Level}
  (R : Commutative-Ring l1)
  (A : algebra-Commutative-Ring l2 R)
  where

  is-closed-under-addition-prop-subset-algebra-Commutative-Ring :
    subset-algebra-Commutative-Ring l3 R A  Prop (l2  l3)
  is-closed-under-addition-prop-subset-algebra-Commutative-Ring =
    is-closed-under-addition-prop-subset-left-module-Commutative-Ring
      ( R)
      ( left-module-algebra-Commutative-Ring R A)

  is-closed-under-addition-subset-algebra-Commutative-Ring :
    subset-algebra-Commutative-Ring l3 R A  UU (l2  l3)
  is-closed-under-addition-subset-algebra-Commutative-Ring S =
    type-Prop (is-closed-under-addition-prop-subset-algebra-Commutative-Ring S)

The condition that a subset is closed under scalar multiplication

module _
  {l1 l2 l3 : Level}
  (R : Commutative-Ring l1)
  (A : algebra-Commutative-Ring l2 R)
  where

  is-closed-under-scalar-multiplication-prop-subset-algebra-Commutative-Ring :
    subset-algebra-Commutative-Ring l3 R A  Prop (l1  l2  l3)
  is-closed-under-scalar-multiplication-prop-subset-algebra-Commutative-Ring =
    is-closed-under-scalar-multiplication-prop-subset-left-module-Commutative-Ring
      ( R)
      ( left-module-algebra-Commutative-Ring R A)

  is-closed-under-scalar-multiplication-subset-algebra-Commutative-Ring :
    subset-algebra-Commutative-Ring l3 R A  UU (l1  l2  l3)
  is-closed-under-scalar-multiplication-subset-algebra-Commutative-Ring S =
    type-Prop
      ( is-closed-under-scalar-multiplication-prop-subset-algebra-Commutative-Ring
        ( S))

The condition that a subset is closed under multiplication

module _
  {l1 l2 l3 : Level}
  (R : Commutative-Ring l1)
  (A : algebra-Commutative-Ring l2 R)
  where

  is-closed-under-multiplication-prop-subset-algebra-Commutative-Ring :
    subset-algebra-Commutative-Ring l3 R A  Prop (l2  l3)
  is-closed-under-multiplication-prop-subset-algebra-Commutative-Ring S =
    Π-Prop
      ( type-algebra-Commutative-Ring R A)
      ( λ x 
        Π-Prop
          ( type-algebra-Commutative-Ring R A)
          ( λ y 
            hom-Prop
              ( S x)
              ( hom-Prop
                ( S y)
                ( S (mul-algebra-Commutative-Ring R A x y)))))

  is-closed-under-multiplication-subset-algebra-Commutative-Ring :
    subset-algebra-Commutative-Ring l3 R A  UU (l2  l3)
  is-closed-under-multiplication-subset-algebra-Commutative-Ring S =
    type-Prop
      ( is-closed-under-multiplication-prop-subset-algebra-Commutative-Ring S)

Recent changes