Repeating an element in a standard finite type
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-02-15.
Last modified on 2023-10-16.
module elementary-number-theory.repeating-element-standard-finite-type where
Imports
open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.coproduct-types open import foundation.empty-types open import foundation.identity-types open import foundation.negated-equality open import foundation.unit-type open import univalent-combinatorics.equality-standard-finite-types open import univalent-combinatorics.standard-finite-types
repeat-Fin : (k : ℕ) (x : Fin k) → Fin (succ-ℕ k) → Fin k repeat-Fin (succ-ℕ k) (inl x) (inl y) = inl (repeat-Fin k x y) repeat-Fin (succ-ℕ k) (inl x) (inr _) = inr star repeat-Fin (succ-ℕ k) (inr _) (inl y) = y repeat-Fin (succ-ℕ k) (inr _) (inr _) = inr star abstract is-almost-injective-repeat-Fin : (k : ℕ) (x : Fin k) {y z : Fin (succ-ℕ k)} → inl x ≠ y → inl x ≠ z → repeat-Fin k x y = repeat-Fin k x z → y = z is-almost-injective-repeat-Fin (succ-ℕ k) (inl x) {inl y} {inl z} f g p = ap ( inl) ( is-almost-injective-repeat-Fin k x ( λ q → f (ap inl q)) ( λ q → g (ap inl q)) ( is-injective-inl p)) is-almost-injective-repeat-Fin (succ-ℕ k) (inl x) {inl y} {inr _} f g p = ex-falso (Eq-Fin-eq (succ-ℕ k) p) is-almost-injective-repeat-Fin (succ-ℕ k) (inl x) {inr _} {inl z} f g p = ex-falso (Eq-Fin-eq (succ-ℕ k) p) is-almost-injective-repeat-Fin (succ-ℕ k) (inl x) {inr _} {inr _} f g p = refl is-almost-injective-repeat-Fin (succ-ℕ k) (inr _) {inl y} {inl z} f g p = ap inl p is-almost-injective-repeat-Fin (succ-ℕ k) (inr _) {inl y} {inr _} f g p = ex-falso (f (ap inl (inv p))) is-almost-injective-repeat-Fin (succ-ℕ k) (inr _) {inr _} {inl z} f g p = ex-falso (g (ap inl p)) is-almost-injective-repeat-Fin (succ-ℕ k) (inr _) {inr _} {inr _} f g p = refl
Recent changes
- 2023-10-16. Fredrik Bakke. Compatibility patch for Agda 2.6.4 (#846).
- 2023-10-09. Fredrik Bakke and Egbert Rijke. Negated equality (#822).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).