Homomorphisms of groups equipped with normal subgroups
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-22.
Last modified on 2023-11-24.
module group-theory.homomorphisms-groups-equipped-with-normal-subgroups where
Imports
open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.subtypes open import foundation.universe-levels open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.normal-subgroups open import group-theory.pullbacks-subgroups open import group-theory.subgroups
Idea
Consider a group G
equipped with a
normal subgroup and a group H
equipped
with a normal subgroup M
. A homomorphism of groups equipped with normal
subgroups from (G,N)
to (H,M)
consists of a
group homomorphism f : G → H
which
reflects the normal subgroup N
into M
, i.e., such that the condition
x ∈ N ⇒ f x ∈ M
holds.
Definitions
The property of group homomorphisms of reflecting a normal subgroup
We say that a group homomorphism f : G → H
reflects a normal subgroup N
of G
into a normal subgroup M
of H
if the property
x ∈ N ⇒ f x ∈ M
holds for every x : G
, i.e., if f
maps elements in N
to elements in M
.
Definitions
The predicate of reflecting a normal subgroup
module _ {l1 l2 l3 l4 : Level} (G : Group l1) (H : Group l2) (N : Normal-Subgroup l3 G) (M : Normal-Subgroup l4 H) where reflects-normal-subgroup-hom-Group : hom-Group G H → UU (l1 ⊔ l3 ⊔ l4) reflects-normal-subgroup-hom-Group f = leq-Normal-Subgroup G N (pullback-Normal-Subgroup G H f M) reflecting-hom-Group : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) reflecting-hom-Group = Σ (hom-Group G H) reflects-normal-subgroup-hom-Group
Reflecting group homomorphisms
module _ {l1 l2 l3 l4 : Level} (G : Group l1) (H : Group l2) (N : Normal-Subgroup l3 G) (M : Normal-Subgroup l4 H) (f : reflecting-hom-Group G H N M) where hom-reflecting-hom-Group : hom-Group G H hom-reflecting-hom-Group = pr1 f reflects-normal-subgroup-reflecting-hom-Group : reflects-normal-subgroup-hom-Group G H N M hom-reflecting-hom-Group reflects-normal-subgroup-reflecting-hom-Group = pr2 f map-reflecting-hom-Group : type-Group G → type-Group H map-reflecting-hom-Group = map-hom-Group G H hom-reflecting-hom-Group
The identity reflecting group homomorphism
We define two variations of the identity reflecting group homomorphism. We will define the standard identity reflecting group homomorphism, but we will also we define a generalized version which takes as an argument an arbitrary element of
reflects-normal-subgroup-hom-Group G G N N (id-hom-Group G).
The purpose is that in functoriality proofs, the proof that the identity homomorphism is reflecting is not always the standard one.
module _ {l1 l2 : Level} (G : Group l1) (N : Normal-Subgroup l2 G) where reflects-normal-subgroup-id-hom-Group : reflects-normal-subgroup-hom-Group G G N N (id-hom-Group G) reflects-normal-subgroup-id-hom-Group = refl-leq-subtype (subset-Normal-Subgroup G N) id-reflecting-hom-Group' : (p : reflects-normal-subgroup-hom-Group G G N N (id-hom-Group G)) → reflecting-hom-Group G G N N pr1 (id-reflecting-hom-Group' p) = id-hom-Group G pr2 (id-reflecting-hom-Group' p) = p id-reflecting-hom-Group : reflecting-hom-Group G G N N id-reflecting-hom-Group = id-reflecting-hom-Group' reflects-normal-subgroup-id-hom-Group
Composition of reflecting group homomorphisms
module _ {l1 l2 l3 l4 l5 l6 : Level} (G : Group l1) (H : Group l2) (K : Group l3) (L : Normal-Subgroup l4 G) (M : Normal-Subgroup l5 H) (N : Normal-Subgroup l6 K) where hom-comp-reflecting-hom-Group : reflecting-hom-Group H K M N → reflecting-hom-Group G H L M → hom-Group G K hom-comp-reflecting-hom-Group g f = comp-hom-Group G H K ( hom-reflecting-hom-Group H K M N g) ( hom-reflecting-hom-Group G H L M f) map-comp-reflecting-hom-Group : reflecting-hom-Group H K M N → reflecting-hom-Group G H L M → type-Group G → type-Group K map-comp-reflecting-hom-Group g f = map-hom-Group G K (hom-comp-reflecting-hom-Group g f) reflects-normal-subgroup-comp-reflecting-hom-Group : (g : reflecting-hom-Group H K M N) → (f : reflecting-hom-Group G H L M) → reflects-normal-subgroup-hom-Group G K L N ( hom-comp-reflecting-hom-Group g f) reflects-normal-subgroup-comp-reflecting-hom-Group g f = transitive-leq-subtype ( subset-Normal-Subgroup G L) ( subset-Normal-Subgroup H M ∘ map-reflecting-hom-Group G H L M f) ( subset-Normal-Subgroup K N ∘ map-comp-reflecting-hom-Group g f) ( ( reflects-normal-subgroup-reflecting-hom-Group H K M N g) ∘ ( map-reflecting-hom-Group G H L M f)) ( reflects-normal-subgroup-reflecting-hom-Group G H L M f) comp-reflecting-hom-Group' : (g : reflecting-hom-Group H K M N) (f : reflecting-hom-Group G H L M) → (p : reflects-normal-subgroup-hom-Group G K L N ( hom-comp-reflecting-hom-Group g f)) → reflecting-hom-Group G K L N pr1 (comp-reflecting-hom-Group' g f p) = hom-comp-reflecting-hom-Group g f pr2 (comp-reflecting-hom-Group' g f p) = p comp-reflecting-hom-Group : reflecting-hom-Group H K M N → reflecting-hom-Group G H L M → reflecting-hom-Group G K L N comp-reflecting-hom-Group g f = comp-reflecting-hom-Group' g f ( reflects-normal-subgroup-comp-reflecting-hom-Group g f)
Homotopies of reflecting homomorphisms
module _ {l1 l2 l3 l4 : Level} (G : Group l1) (H : Group l2) (N : Normal-Subgroup l3 G) (M : Normal-Subgroup l4 H) where htpy-reflecting-hom-Group : reflecting-hom-Group G H N M → reflecting-hom-Group G H N M → UU (l1 ⊔ l2) htpy-reflecting-hom-Group f g = htpy-hom-Group G H ( hom-reflecting-hom-Group G H N M f) ( hom-reflecting-hom-Group G H N M g) refl-htpy-reflecting-hom-Group : (f : reflecting-hom-Group G H N M) → htpy-reflecting-hom-Group f f refl-htpy-reflecting-hom-Group f = refl-htpy-hom-Group G H (hom-reflecting-hom-Group G H N M f)
Properties
Characterization of equality of reflecting homomorphisms
module _ {l1 l2 l3 l4 : Level} (G : Group l1) (H : Group l2) (N : Normal-Subgroup l3 G) (M : Normal-Subgroup l4 H) (f : reflecting-hom-Group G H N M) where htpy-eq-reflecting-hom-Group : (g : reflecting-hom-Group G H N M) → f = g → htpy-reflecting-hom-Group G H N M f g htpy-eq-reflecting-hom-Group g refl = refl-htpy-reflecting-hom-Group G H N M f
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-22. Egbert Rijke and Fredrik Bakke. Functoriality of the quotient operation on groups (#838).