Tangent spheres
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-17.
Last modified on 2024-04-25.
module synthetic-homotopy-theory.tangent-spheres where
Imports
open import elementary-number-theory.natural-numbers open import foundation.commuting-squares-of-maps open import foundation.dependent-pair-types open import foundation.mere-equivalences open import foundation.unit-type open import foundation.universe-levels open import synthetic-homotopy-theory.cocones-under-spans open import synthetic-homotopy-theory.mere-spheres open import synthetic-homotopy-theory.pushouts open import synthetic-homotopy-theory.spheres
Idea
Consider a type X
and a point x : X
. We say that x
has a tangent
n
-sphere if we can construct the following data:
- A mere sphere
T
, which we also refer to as the tangent sphere ofx
. - A type
C
, which we call the complement ofx
. - A map
j : T → C
including the tangent sphere into the complement. - A map
i : C → X
including the complement into the typeX
. - A homotopy witnessing that the square
commutes, and is a pushout.j T -----> C | | | | i ∨ ⌜ ∨ 1 -----> X x
In other words, a tangent n
-sphere at a point x
consistst of a mere sphere
and a complement such that the space X
can be reconstructed by attaching the
point to the complement via the inclusion of the tangent sphere into the
complement.
Definitions
The predicate of having a tangent sphere
module _ {l : Level} (n : ℕ) {X : UU l} (x : X) where has-tangent-sphere : UU (lsuc l) has-tangent-sphere = Σ ( mere-sphere lzero n) ( λ T → Σ ( UU l) ( λ C → Σ ( type-mere-sphere n T → C) ( λ j → Σ ( C → X) ( λ i → Σ ( coherence-square-maps ( j) ( terminal-map (type-mere-sphere n T)) ( i) ( point x)) ( λ H → is-pushout ( terminal-map (type-mere-sphere n T)) ( j) ( point x , i , H)))))) module _ {l : Level} (n : ℕ) {X : UU l} {x : X} (T : has-tangent-sphere n x) where tangent-sphere-has-tangent-sphere : mere-sphere lzero n tangent-sphere-has-tangent-sphere = pr1 T type-tangent-sphere-has-tangent-sphere : UU lzero type-tangent-sphere-has-tangent-sphere = type-mere-sphere n tangent-sphere-has-tangent-sphere mere-equiv-tangent-sphere-has-tangent-sphere : mere-equiv (sphere n) type-tangent-sphere-has-tangent-sphere mere-equiv-tangent-sphere-has-tangent-sphere = mere-equiv-mere-sphere n tangent-sphere-has-tangent-sphere complement-has-tangent-sphere : UU l complement-has-tangent-sphere = pr1 (pr2 T) inclusion-tangent-sphere-has-tangent-sphere : type-tangent-sphere-has-tangent-sphere → complement-has-tangent-sphere inclusion-tangent-sphere-has-tangent-sphere = pr1 (pr2 (pr2 T)) inclusion-complement-has-tangent-sphere : complement-has-tangent-sphere → X inclusion-complement-has-tangent-sphere = pr1 (pr2 (pr2 (pr2 T))) coherence-square-has-tangent-sphere : coherence-square-maps ( inclusion-tangent-sphere-has-tangent-sphere) ( terminal-map type-tangent-sphere-has-tangent-sphere) ( inclusion-complement-has-tangent-sphere) ( point x) coherence-square-has-tangent-sphere = pr1 (pr2 (pr2 (pr2 (pr2 T)))) cocone-has-tangent-sphere : cocone ( terminal-map type-tangent-sphere-has-tangent-sphere) ( inclusion-tangent-sphere-has-tangent-sphere) ( X) pr1 cocone-has-tangent-sphere = point x pr1 (pr2 cocone-has-tangent-sphere) = inclusion-complement-has-tangent-sphere pr2 (pr2 cocone-has-tangent-sphere) = coherence-square-has-tangent-sphere is-pushout-has-tangent-sphere : is-pushout ( terminal-map type-tangent-sphere-has-tangent-sphere) ( inclusion-tangent-sphere-has-tangent-sphere) ( cocone-has-tangent-sphere) is-pushout-has-tangent-sphere = pr2 (pr2 (pr2 (pr2 (pr2 T))))
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-01-09. Fredrik Bakke. Make type argument explicit for
terminal-map
(#993). - 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-17. Egbert Rijke. Tangent spheres (#853).