The category of group actions
Content created by Fredrik Bakke.
Created on 2023-11-24.
Last modified on 2023-11-24.
module group-theory.category-of-group-actions where
Imports
open import category-theory.categories open import category-theory.isomorphisms-in-large-precategories open import category-theory.large-categories open import category-theory.large-precategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.universe-levels open import group-theory.group-actions open import group-theory.groups open import group-theory.homomorphisms-group-actions open import group-theory.isomorphisms-group-actions open import group-theory.precategory-of-group-actions
Idea
The large category of group actions consists of group actions and morphisms of group actions between them.
Definitions
The large category of G
-sets
module _ {l1 : Level} (G : Group l1) where is-large-category-action-Group-Large-Category : is-large-category-Large-Precategory (action-Group-Large-Precategory G) is-large-category-action-Group-Large-Category X = fundamental-theorem-id ( is-torsorial-iso-action-Group G X) ( iso-eq-Large-Precategory (action-Group-Large-Precategory G) X) action-Group-Large-Category : Large-Category (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) large-precategory-Large-Category action-Group-Large-Category = action-Group-Large-Precategory G is-large-category-Large-Category action-Group-Large-Category = is-large-category-action-Group-Large-Category
The small category of G
-sets
module _ {l1 : Level} (G : Group l1) where action-Group-Category : (l2 : Level) → Category (l1 ⊔ lsuc l2) (l1 ⊔ l2) action-Group-Category = category-Large-Category (action-Group-Large-Category G)
Recent changes
- 2023-11-24. Fredrik Bakke. The orbit category of a group (#935).