The category of group actions

Content created by Fredrik Bakke.

Created on 2023-11-24.
Last modified on 2023-11-24.

module group-theory.category-of-group-actions where
Imports
open import category-theory.categories
open import category-theory.isomorphisms-in-large-precategories
open import category-theory.large-categories
open import category-theory.large-precategories
open import category-theory.precategories

open import foundation.dependent-pair-types
open import foundation.fundamental-theorem-of-identity-types
open import foundation.universe-levels

open import group-theory.group-actions
open import group-theory.groups
open import group-theory.homomorphisms-group-actions
open import group-theory.isomorphisms-group-actions
open import group-theory.precategory-of-group-actions

Idea

The large category of group actions consists of group actions and morphisms of group actions between them.

Definitions

The large category of G-sets

module _
  {l1 : Level} (G : Group l1)
  where

  is-large-category-action-Group-Large-Category :
    is-large-category-Large-Precategory (action-Group-Large-Precategory G)
  is-large-category-action-Group-Large-Category X =
    fundamental-theorem-id
      ( is-torsorial-iso-action-Group G X)
      ( iso-eq-Large-Precategory (action-Group-Large-Precategory G) X)

  action-Group-Large-Category :
    Large-Category  l2  l1  lsuc l2)  l2 l3  l1  l2  l3)
  large-precategory-Large-Category action-Group-Large-Category =
      action-Group-Large-Precategory G
  is-large-category-Large-Category action-Group-Large-Category =
    is-large-category-action-Group-Large-Category

The small category of G-sets

module _
  {l1 : Level} (G : Group l1)
  where

  action-Group-Category :
    (l2 : Level)  Category (l1  lsuc l2) (l1  l2)
  action-Group-Category =
    category-Large-Category (action-Group-Large-Category G)

Recent changes