Arithmetic sequences of positive rational numbers
Content created by malarbol.
Created on 2025-04-24.
Last modified on 2025-04-24.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.arithmetic-sequences-positive-rational-numbers where
Imports
open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.archimedean-property-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.integers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.propositional-truncations open import foundation.sequences open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.arithmetic-sequences-semigroups open import group-theory.powers-of-elements-monoids open import order-theory.increasing-sequences-posets open import order-theory.strictly-increasing-sequences-strictly-preordered-sets open import order-theory.strictly-preordered-sets
Idea
An arithmetic sequence¶ of positive rational numbers is an arithmetic sequence in the additive semigroup of positive rational numbers.
The values of an arithmetic sequence are determined by its initial value and its common difference; an arithmetic sequence of positive rational numbers is strictly increasing.
Definitions
Arithmetic sequences of positive rational numbers
arithmetic-sequence-ℚ⁺ : UU lzero arithmetic-sequence-ℚ⁺ = arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ module _ (u : arithmetic-sequence-ℚ⁺) where seq-arithmetic-sequence-ℚ⁺ : sequence ℚ⁺ seq-arithmetic-sequence-ℚ⁺ = seq-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ u is-arithmetic-seq-arithmetic-sequence-ℚ⁺ : is-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ seq-arithmetic-sequence-ℚ⁺ is-arithmetic-seq-arithmetic-sequence-ℚ⁺ = is-arithmetic-seq-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ u common-difference-arithmetic-sequence-ℚ⁺ : ℚ⁺ common-difference-arithmetic-sequence-ℚ⁺ = common-difference-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ u rational-common-difference-arithmetic-sequence-ℚ⁺ : ℚ rational-common-difference-arithmetic-sequence-ℚ⁺ = rational-ℚ⁺ common-difference-arithmetic-sequence-ℚ⁺ is-common-difference-arithmetic-sequence-ℚ⁺ : is-common-difference-sequence-Semigroup semigroup-add-ℚ⁺ seq-arithmetic-sequence-ℚ⁺ common-difference-arithmetic-sequence-ℚ⁺ is-common-difference-arithmetic-sequence-ℚ⁺ = is-common-difference-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ u initial-term-arithmetic-sequence-ℚ⁺ : ℚ⁺ initial-term-arithmetic-sequence-ℚ⁺ = initial-term-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ u
The standard arithmetic sequence of positive rational numbers with initial term a
and common difference d
module _ (a d : ℚ⁺) where standard-arithmetic-sequence-ℚ⁺ : arithmetic-sequence-ℚ⁺ standard-arithmetic-sequence-ℚ⁺ = standard-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ a d seq-standard-arithmetic-sequence-ℚ⁺ : sequence ℚ⁺ seq-standard-arithmetic-sequence-ℚ⁺ = seq-arithmetic-sequence-ℚ⁺ standard-arithmetic-sequence-ℚ⁺
Properties
Two arithmetic sequences of positive rational numbers with the same initial term and common difference are homotopic
htpy-seq-arithmetic-sequence-ℚ⁺ : ( u v : arithmetic-sequence-ℚ⁺) → ( initial-term-arithmetic-sequence-ℚ⁺ u = initial-term-arithmetic-sequence-ℚ⁺ v) → ( common-difference-arithmetic-sequence-ℚ⁺ u = common-difference-arithmetic-sequence-ℚ⁺ v) → seq-arithmetic-sequence-ℚ⁺ u ~ seq-arithmetic-sequence-ℚ⁺ v htpy-seq-arithmetic-sequence-ℚ⁺ = htpy-seq-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺
The nth term of the arithmetic sequence with initial term a
and common difference d
is a + n * d
module _ (a d : ℚ⁺) where abstract compute-standard-arithmetic-sequence-ℚ⁺ : ( n : ℕ) → ( rational-ℚ⁺ a +ℚ rational-ℕ n *ℚ rational-ℚ⁺ d) = ( rational-ℚ⁺ (seq-standard-arithmetic-sequence-ℚ⁺ a d n)) compute-standard-arithmetic-sequence-ℚ⁺ zero-ℕ = ( ap (add-ℚ (rational-ℚ⁺ a)) (left-zero-law-mul-ℚ (rational-ℚ⁺ d))) ∙ ( right-unit-law-add-ℚ (rational-ℚ⁺ a)) compute-standard-arithmetic-sequence-ℚ⁺ (succ-ℕ n) = ( ap ( add-ℚ (rational-ℚ⁺ a)) ( ( ap (mul-ℚ' (rational-ℚ⁺ d)) (inv (succ-rational-int-ℕ n))) ∙ ( mul-left-succ-ℚ (rational-ℕ n) (rational-ℚ⁺ d)) ∙ ( commutative-add-ℚ ( rational-ℚ⁺ d) ( rational-ℕ n *ℚ rational-ℚ⁺ d)))) ∙ ( inv ( associative-add-ℚ ( rational-ℚ⁺ a) ( rational-ℕ n *ℚ rational-ℚ⁺ d) ( rational-ℚ⁺ d))) ∙ ( ap ( add-ℚ' (rational-ℚ⁺ d)) ( compute-standard-arithmetic-sequence-ℚ⁺ n)) module _ (u : arithmetic-sequence-ℚ⁺) where abstract compute-arithmetic-sequence-ℚ⁺ : ( n : ℕ) → Id ( add-ℚ ( rational-ℚ⁺ (initial-term-arithmetic-sequence-ℚ⁺ u)) ( mul-ℚ ( rational-ℕ n) ( rational-ℚ⁺ (common-difference-arithmetic-sequence-ℚ⁺ u)))) ( rational-ℚ⁺ (seq-arithmetic-sequence-ℚ⁺ u n)) compute-arithmetic-sequence-ℚ⁺ n = ( compute-standard-arithmetic-sequence-ℚ⁺ ( initial-term-arithmetic-sequence-ℚ⁺ u) ( common-difference-arithmetic-sequence-ℚ⁺ u) ( n)) ∙ ( ap ( rational-ℚ⁺) ( htpy-seq-standard-arithmetic-sequence-Semigroup semigroup-add-ℚ⁺ u n))
An arithmetic sequence of positive rational numbers is strictly increasing
module _ (u : arithmetic-sequence-ℚ⁺) where abstract le-succ-seq-arithmetic-sequence-ℚ⁺ : (n : ℕ) → le-ℚ⁺ ( seq-arithmetic-sequence-ℚ⁺ u n) ( seq-arithmetic-sequence-ℚ⁺ u (succ-ℕ n)) le-succ-seq-arithmetic-sequence-ℚ⁺ n = inv-tr ( le-ℚ⁺ (seq-arithmetic-sequence-ℚ⁺ u n)) ( is-common-difference-arithmetic-sequence-ℚ⁺ u n) ( le-right-add-rational-ℚ⁺ ( rational-ℚ⁺ (seq-arithmetic-sequence-ℚ⁺ u n)) ( common-difference-arithmetic-sequence-ℚ⁺ u)) is-strictly-increasing-seq-arithmetic-sequence-ℚ⁺ : is-strictly-increasing-sequence-Strictly-Preordered-Set ( strictly-preordered-set-ℚ⁺) ( seq-arithmetic-sequence-ℚ⁺ u) is-strictly-increasing-seq-arithmetic-sequence-ℚ⁺ = is-strictly-increasing-le-succ-sequence-Strictly-Preordered-Set ( strictly-preordered-set-ℚ⁺) ( seq-arithmetic-sequence-ℚ⁺ u) ( le-succ-seq-arithmetic-sequence-ℚ⁺)
An arithmetic sequence of positive rational numbers is increasing
module _ (u : arithmetic-sequence-ℚ⁺) where abstract leq-succ-seq-arithmetic-sequence-ℚ⁺ : (n : ℕ) → leq-ℚ⁺ ( seq-arithmetic-sequence-ℚ⁺ u n) ( seq-arithmetic-sequence-ℚ⁺ u (succ-ℕ n)) leq-succ-seq-arithmetic-sequence-ℚ⁺ n = leq-le-ℚ⁺ { seq-arithmetic-sequence-ℚ⁺ u n} { seq-arithmetic-sequence-ℚ⁺ u (succ-ℕ n)} ( le-succ-seq-arithmetic-sequence-ℚ⁺ u n) is-increasing-seq-arithmetic-sequence-ℚ⁺ : is-increasing-sequence-Poset ( poset-ℚ⁺) ( seq-arithmetic-sequence-ℚ⁺ u) is-increasing-seq-arithmetic-sequence-ℚ⁺ = is-increasing-leq-succ-sequence-Poset ( poset-ℚ⁺) ( seq-arithmetic-sequence-ℚ⁺ u) ( leq-succ-seq-arithmetic-sequence-ℚ⁺)
The terms of an arithmetic sequence of positive rational numbers are greater than or equal to its initial term
module _ (u : arithmetic-sequence-ℚ⁺) where abstract leq-initial-arithmetic-sequence-ℚ⁺ : (n : ℕ) → leq-ℚ⁺ ( initial-term-arithmetic-sequence-ℚ⁺ u) ( seq-arithmetic-sequence-ℚ⁺ u n) leq-initial-arithmetic-sequence-ℚ⁺ zero-ℕ = refl-leq-ℚ (rational-ℚ⁺ (initial-term-arithmetic-sequence-ℚ⁺ u)) leq-initial-arithmetic-sequence-ℚ⁺ (succ-ℕ n) = leq-le-ℚ⁺ { initial-term-arithmetic-sequence-ℚ⁺ u} { seq-arithmetic-sequence-ℚ⁺ u (succ-ℕ n)} ( concatenate-leq-le-ℚ ( rational-ℚ⁺ (initial-term-arithmetic-sequence-ℚ⁺ u)) ( rational-ℚ⁺ (seq-arithmetic-sequence-ℚ⁺ u n)) ( rational-ℚ⁺ (seq-arithmetic-sequence-ℚ⁺ u (succ-ℕ n))) ( leq-initial-arithmetic-sequence-ℚ⁺ n) ( le-succ-seq-arithmetic-sequence-ℚ⁺ u n))
See also
- Geometric sequences in ℚ⁺: arithmetic sequences in the multiplicative semigroup of ℚ⁺;
- Bernoulli’s inequality in ℚ⁺: comparison between arithmetic and geometric sequences in ℚ⁺.
External links
- Arithmetic progression at Wikidata
- Arithmetic progressions at Wikipedia
Recent changes
- 2025-04-24. malarbol. Bernoulli’s inequality on the positive rational numbers (#1371).