Operations on spans of families of types
Content created by Egbert Rijke.
Created on 2024-01-28.
Last modified on 2024-01-28.
module foundation.operations-spans-families-of-types where
Imports
open import foundation.dependent-pair-types open import foundation.spans-families-of-types open import foundation.universe-levels open import foundation-core.function-types
Idea
This file contains a collection of operations that produce new spans of families of types from given spans of families of types.
Definitions
Concatenation of spans and families of maps
Consider a span 𝒮 := (S , s)
on a family of types A : I → 𝒰
and consider a
family of maps f : (i : I) → A i → B i
. Then we can concatenate the span 𝒮
with the family of maps f
to obtain the span (S , λ i → f i ∘ s i)
on B
.
module _ {l1 l2 l3 l4 : Level} {I : UU l1} {A : I → UU l2} {B : I → UU l3} (𝒮 : span-type-family l4 A) (f : (i : I) → A i → B i) where spanning-type-concat-span-hom-family-of-types : UU l4 spanning-type-concat-span-hom-family-of-types = spanning-type-span-type-family 𝒮 map-concat-span-hom-family-of-types : (i : I) → spanning-type-concat-span-hom-family-of-types → B i map-concat-span-hom-family-of-types i = f i ∘ map-span-type-family 𝒮 i concat-span-hom-family-of-types : span-type-family l4 B pr1 concat-span-hom-family-of-types = spanning-type-concat-span-hom-family-of-types pr2 concat-span-hom-family-of-types = map-concat-span-hom-family-of-types
Recent changes
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).