Products of right ideals of rings
Content created by Fredrik Bakke, Egbert Rijke and Maša Žaucer.
Created on 2023-06-08.
Last modified on 2023-06-09.
module ring-theory.products-right-ideals-rings where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositional-truncations open import foundation.universe-levels open import ring-theory.poset-of-right-ideals-rings open import ring-theory.products-subsets-rings open import ring-theory.right-ideals-generated-by-subsets-rings open import ring-theory.right-ideals-rings open import ring-theory.rings open import ring-theory.subsets-rings
Idea
The product of two right ideals I
and
J
in a ring is the right ideal
generated by all
products of elements in I
and J
.
Definition
The universal property of the product of two right ideals in a ring
module _ {l1 l2 l3 : Level} (R : Ring l1) (I : right-ideal-Ring l2 R) (J : right-ideal-Ring l3 R) where contains-product-right-ideal-Ring : {l4 : Level} (K : right-ideal-Ring l4 R) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) contains-product-right-ideal-Ring K = (x y : type-Ring R) → is-in-right-ideal-Ring R I x → is-in-right-ideal-Ring R J y → is-in-right-ideal-Ring R K (mul-Ring R x y) is-product-right-ideal-Ring : {l4 : Level} (K : right-ideal-Ring l4 R) → contains-product-right-ideal-Ring K → UUω is-product-right-ideal-Ring K H = {l5 : Level} (L : right-ideal-Ring l5 R) → contains-product-right-ideal-Ring L → leq-right-ideal-Ring R K L
The product of two right ideals in a ring
module _ {l1 l2 l3 : Level} (R : Ring l1) (I : right-ideal-Ring l2 R) (J : right-ideal-Ring l3 R) where generating-subset-product-right-ideal-Ring : subset-Ring (l1 ⊔ l2 ⊔ l3) R generating-subset-product-right-ideal-Ring = product-subset-Ring R ( subset-right-ideal-Ring R I) ( subset-right-ideal-Ring R J) product-right-ideal-Ring : right-ideal-Ring (l1 ⊔ l2 ⊔ l3) R product-right-ideal-Ring = right-ideal-subset-Ring R generating-subset-product-right-ideal-Ring subset-product-right-ideal-Ring : subset-Ring (l1 ⊔ l2 ⊔ l3) R subset-product-right-ideal-Ring = subset-right-ideal-Ring R product-right-ideal-Ring is-in-product-right-ideal-Ring : type-Ring R → UU (l1 ⊔ l2 ⊔ l3) is-in-product-right-ideal-Ring = is-in-right-ideal-Ring R product-right-ideal-Ring contains-product-product-right-ideal-Ring : (x y : type-Ring R) → is-in-right-ideal-Ring R I x → is-in-right-ideal-Ring R J y → is-in-product-right-ideal-Ring (mul-Ring R x y) contains-product-product-right-ideal-Ring x y H K = contains-subset-right-ideal-subset-Ring R ( generating-subset-product-right-ideal-Ring) ( mul-Ring R x y) ( unit-trunc-Prop ((x , H) , (y , K) , refl)) is-product-product-right-ideal-Ring : is-product-right-ideal-Ring R I J ( product-right-ideal-Ring) ( contains-product-product-right-ideal-Ring) is-product-product-right-ideal-Ring K H = is-right-ideal-generated-by-subset-right-ideal-subset-Ring R ( generating-subset-product-right-ideal-Ring) ( K) ( λ x p → apply-universal-property-trunc-Prop p ( subset-right-ideal-Ring R K x) ( λ ((r , p) , ((s , q) , z)) → is-closed-under-eq-right-ideal-Ring R K (H r s p q) (inv z)))
Properties
The product of right ideals preserves inequality of right ideals
module _ {l1 l2 l3 l4 l5 : Level} (A : Ring l1) (I : right-ideal-Ring l2 A) (J : right-ideal-Ring l3 A) (K : right-ideal-Ring l4 A) (L : right-ideal-Ring l5 A) where preserves-leq-product-right-ideal-Ring : leq-right-ideal-Ring A I J → leq-right-ideal-Ring A K L → leq-right-ideal-Ring A ( product-right-ideal-Ring A I K) ( product-right-ideal-Ring A J L) preserves-leq-product-right-ideal-Ring p q = is-product-product-right-ideal-Ring A I K ( product-right-ideal-Ring A J L) ( λ x y u v → contains-product-product-right-ideal-Ring A J L _ _ ( p x u) ( q y v)) module _ {l1 l2 l3 l4 : Level} (A : Ring l1) (I : right-ideal-Ring l2 A) (J : right-ideal-Ring l3 A) (K : right-ideal-Ring l4 A) where preserves-leq-left-product-right-ideal-Ring : leq-right-ideal-Ring A I J → leq-right-ideal-Ring A ( product-right-ideal-Ring A I K) ( product-right-ideal-Ring A J K) preserves-leq-left-product-right-ideal-Ring p = preserves-leq-product-right-ideal-Ring A I J K K p ( refl-leq-right-ideal-Ring A K) preserves-leq-right-product-right-ideal-Ring : leq-right-ideal-Ring A J K → leq-right-ideal-Ring A ( product-right-ideal-Ring A I J) ( product-right-ideal-Ring A I K) preserves-leq-right-product-right-ideal-Ring = preserves-leq-product-right-ideal-Ring A I I J K ( refl-leq-right-ideal-Ring A I)
Recent changes
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).