Sequences in preorders
Content created by malarbol.
Created on 2025-04-22.
Last modified on 2025-04-22.
module order-theory.sequences-preorders where
Imports
open import elementary-number-theory.natural-numbers open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.propositions open import foundation.sequences open import foundation.universe-levels open import order-theory.preorders
Idea
A sequence¶ in a preorder is a sequence in its underlying type.
Definitions
Sequences in preorders
module _ {l1 l2 : Level} (P : Preorder l1 l2) where type-sequence-Preorder : UU l1 type-sequence-Preorder = sequence (type-Preorder P)
Pointwise comparison on sequences in preorders
module _ {l1 l2 : Level} (P : Preorder l1 l2) (u v : type-sequence-Preorder P) where leq-value-prop-sequence-Preorder : ℕ → Prop l2 leq-value-prop-sequence-Preorder n = leq-prop-Preorder P (u n) (v n) leq-value-sequence-Preorder : ℕ → UU l2 leq-value-sequence-Preorder = type-Prop ∘ leq-value-prop-sequence-Preorder leq-prop-sequence-Preorder : Prop l2 leq-prop-sequence-Preorder = Π-Prop ℕ leq-value-prop-sequence-Preorder leq-sequence-Preorder : UU l2 leq-sequence-Preorder = type-Prop leq-prop-sequence-Preorder is-prop-leq-sequence-Preorder : is-prop leq-sequence-Preorder is-prop-leq-sequence-Preorder = is-prop-type-Prop leq-prop-sequence-Preorder
Properties
The type of sequences in a preorder is a preorder ordered by pointwise comparison
module _ {l1 l2 : Level} (P : Preorder l1 l2) where refl-leq-sequence-Preorder : is-reflexive (leq-sequence-Preorder P) refl-leq-sequence-Preorder u n = refl-leq-Preorder P (u n) transitive-leq-sequence-Preorder : is-transitive (leq-sequence-Preorder P) transitive-leq-sequence-Preorder u v w J I n = transitive-leq-Preorder P (u n) (v n) (w n) (J n) (I n) sequence-Preorder : Preorder l1 l2 pr1 sequence-Preorder = type-sequence-Preorder P pr1 (pr2 sequence-Preorder) = leq-prop-sequence-Preorder P pr1 (pr2 (pr2 sequence-Preorder)) = refl-leq-sequence-Preorder pr2 (pr2 (pr2 sequence-Preorder)) = transitive-leq-sequence-Preorder
Recent changes
- 2025-04-22. malarbol. Monotonic sequences in posets (#1388).