Morphisms of twisted arrows
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-11-09.
Last modified on 2024-04-25.
module foundation.morphisms-twisted-arrows where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.function-types open import foundation-core.homotopies
Idea
A morphism of twisted arrows from f : A → B
to g : X → Y
is a triple
(i , j , H)
consisting of
-
a map
i : X → A
-
a map
j : B → Y
, and -
a homotopy
H : j ∘ f ∘ i ~ g
witnessing that the squarei A <----- X | | f | | g ∨ ∨ B -----> Y j
commutes.
Thus, a morphism of twisted arrows can also be understood as a factorization of
g
through f
.
Definitions
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where coherence-hom-twisted-arrow : (X → A) → (B → Y) → UU (l3 ⊔ l4) coherence-hom-twisted-arrow i j = j ∘ f ∘ i ~ g hom-twisted-arrow : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) hom-twisted-arrow = Σ (X → A) (λ i → Σ (B → Y) (coherence-hom-twisted-arrow i)) module _ (α : hom-twisted-arrow) where map-domain-hom-twisted-arrow : X → A map-domain-hom-twisted-arrow = pr1 α map-codomain-hom-twisted-arrow : B → Y map-codomain-hom-twisted-arrow = pr1 (pr2 α) coh-hom-twisted-arrow : map-codomain-hom-twisted-arrow ∘ f ∘ map-domain-hom-twisted-arrow ~ g coh-hom-twisted-arrow = pr2 (pr2 α)
See also
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-03-13. Egbert Rijke. Refactoring pointed types (#1056).
- 2023-11-09. Egbert Rijke and Fredrik Bakke. Refactoring of retractions, sections, and equivalences, and adding the 6-for-2 property of equivalences (#903).