Bilinear forms in real vector spaces
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2025-11-26.
{-# OPTIONS --lossy-unification #-} module linear-algebra.bilinear-forms-real-vector-spaces where
Imports
open import foundation.conjunction open import foundation.dependent-pair-types open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.real-vector-spaces open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.multiplication-real-numbers
Idea
A
bilinear form¶
on a real vector space V is a map
B : V → V → ℝ that is linear in each argument:
B (a * x + b * y) z = a * B x z + b * B y z and
B x (a * y + b * z) = a * B x y + b * B x z.
Definition
module _ {l1 l2 : Level} (V : ℝ-Vector-Space l1 l2) (B : type-ℝ-Vector-Space V → type-ℝ-Vector-Space V → ℝ l1) where is-left-additive-prop-form-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2) is-left-additive-prop-form-ℝ-Vector-Space = Π-Prop ( type-ℝ-Vector-Space V) ( λ x → Π-Prop ( type-ℝ-Vector-Space V) ( λ y → Π-Prop ( type-ℝ-Vector-Space V) ( λ z → Id-Prop ( ℝ-Set l1) ( B (add-ℝ-Vector-Space V x y) z) ( B x z +ℝ B y z)))) is-left-additive-form-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2) is-left-additive-form-ℝ-Vector-Space = type-Prop is-left-additive-prop-form-ℝ-Vector-Space preserves-scalar-mul-left-prop-form-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2) preserves-scalar-mul-left-prop-form-ℝ-Vector-Space = Π-Prop ( ℝ l1) ( λ a → Π-Prop ( type-ℝ-Vector-Space V) ( λ x → Π-Prop ( type-ℝ-Vector-Space V) ( λ y → Id-Prop ( ℝ-Set l1) ( B (mul-ℝ-Vector-Space V a x) y) ( a *ℝ B x y)))) preserves-scalar-mul-left-form-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2) preserves-scalar-mul-left-form-ℝ-Vector-Space = type-Prop preserves-scalar-mul-left-prop-form-ℝ-Vector-Space is-right-additive-prop-form-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2) is-right-additive-prop-form-ℝ-Vector-Space = Π-Prop ( type-ℝ-Vector-Space V) ( λ x → Π-Prop ( type-ℝ-Vector-Space V) ( λ y → Π-Prop ( type-ℝ-Vector-Space V) ( λ z → Id-Prop ( ℝ-Set l1) ( B x (add-ℝ-Vector-Space V y z)) ( B x y +ℝ B x z)))) is-right-additive-form-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2) is-right-additive-form-ℝ-Vector-Space = type-Prop is-right-additive-prop-form-ℝ-Vector-Space preserves-scalar-mul-right-prop-form-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2) preserves-scalar-mul-right-prop-form-ℝ-Vector-Space = Π-Prop ( ℝ l1) ( λ a → Π-Prop ( type-ℝ-Vector-Space V) ( λ x → Π-Prop ( type-ℝ-Vector-Space V) ( λ y → Id-Prop ( ℝ-Set l1) ( B x (mul-ℝ-Vector-Space V a y)) ( a *ℝ B x y)))) preserves-scalar-mul-right-form-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2) preserves-scalar-mul-right-form-ℝ-Vector-Space = type-Prop preserves-scalar-mul-right-prop-form-ℝ-Vector-Space is-bilinear-prop-form-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2) is-bilinear-prop-form-ℝ-Vector-Space = is-left-additive-prop-form-ℝ-Vector-Space ∧ preserves-scalar-mul-left-prop-form-ℝ-Vector-Space ∧ is-right-additive-prop-form-ℝ-Vector-Space ∧ preserves-scalar-mul-right-prop-form-ℝ-Vector-Space is-bilinear-form-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2) is-bilinear-form-ℝ-Vector-Space = type-Prop is-bilinear-prop-form-ℝ-Vector-Space bilinear-form-ℝ-Vector-Space : {l1 l2 : Level} (V : ℝ-Vector-Space l1 l2) → UU (lsuc l1 ⊔ l2) bilinear-form-ℝ-Vector-Space V = type-subtype (is-bilinear-prop-form-ℝ-Vector-Space V) module _ {l1 l2 : Level} (V : ℝ-Vector-Space l1 l2) (B : bilinear-form-ℝ-Vector-Space V) where map-bilinear-form-ℝ-Vector-Space : type-ℝ-Vector-Space V → type-ℝ-Vector-Space V → ℝ l1 map-bilinear-form-ℝ-Vector-Space = pr1 B is-left-additive-map-bilinear-form-ℝ-Vector-Space : is-left-additive-form-ℝ-Vector-Space V map-bilinear-form-ℝ-Vector-Space is-left-additive-map-bilinear-form-ℝ-Vector-Space = pr1 (pr2 B) preserves-scalar-mul-left-map-bilinear-form-ℝ-Vector-Space : preserves-scalar-mul-left-form-ℝ-Vector-Space ( V) ( map-bilinear-form-ℝ-Vector-Space) preserves-scalar-mul-left-map-bilinear-form-ℝ-Vector-Space = pr1 (pr2 (pr2 B)) is-right-additive-map-bilinear-form-ℝ-Vector-Space : is-right-additive-form-ℝ-Vector-Space ( V) ( map-bilinear-form-ℝ-Vector-Space) is-right-additive-map-bilinear-form-ℝ-Vector-Space = pr1 (pr2 (pr2 (pr2 B))) preserves-scalar-mul-right-map-bilinear-form-ℝ-Vector-Space : preserves-scalar-mul-right-form-ℝ-Vector-Space ( V) ( map-bilinear-form-ℝ-Vector-Space) preserves-scalar-mul-right-map-bilinear-form-ℝ-Vector-Space = pr2 (pr2 (pr2 (pr2 B)))
External links
- Bilinear form at Wikidata
- Bilinear form on Wikipedia
Recent changes
- 2025-11-26. Louis Wasserman. Inner product spaces (#1705).