Function groups
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-03-13.
Last modified on 2024-03-11.
module group-theory.function-groups where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.dependent-products-groups open import group-theory.groups open import group-theory.monoids open import group-theory.semigroups
Idea
Given a group G
and a type X
, the function group G^X
consists of functions
from X
to the underlying type of G
. The group operations are given
pointwise.
Definition
module _ {l1 l2 : Level} (G : Group l1) (X : UU l2) where function-Group : Group (l1 ⊔ l2) function-Group = Π-Group X (λ _ → G) semigroup-function-Group : Semigroup (l1 ⊔ l2) semigroup-function-Group = semigroup-Π-Group X (λ _ → G) set-function-Group : Set (l1 ⊔ l2) set-function-Group = set-Π-Group X (λ _ → G) type-function-Group : UU (l1 ⊔ l2) type-function-Group = type-Π-Group X (λ _ → G) mul-function-Group : (f g : type-function-Group) → type-function-Group mul-function-Group = mul-Π-Group X (λ _ → G) associative-mul-function-Group : (f g h : type-function-Group) → mul-function-Group (mul-function-Group f g) h = mul-function-Group f (mul-function-Group g h) associative-mul-function-Group = associative-mul-Π-Group X (λ _ → G) unit-function-Group : type-function-Group unit-function-Group = unit-Π-Group X (λ _ → G) left-unit-law-mul-function-Group : (f : type-function-Group) → mul-function-Group unit-function-Group f = f left-unit-law-mul-function-Group = left-unit-law-mul-Π-Group X (λ _ → G) right-unit-law-mul-function-Group : (f : type-function-Group) → mul-function-Group f unit-function-Group = f right-unit-law-mul-function-Group = right-unit-law-mul-Π-Group X (λ _ → G) is-unital-function-Group : is-unital-Semigroup semigroup-function-Group is-unital-function-Group = is-unital-Π-Group X (λ _ → G) monoid-function-Group : Monoid (l1 ⊔ l2) pr1 monoid-function-Group = semigroup-function-Group pr2 monoid-function-Group = is-unital-function-Group inv-function-Group : type-function-Group → type-function-Group inv-function-Group = inv-Π-Group X (λ _ → G) left-inverse-law-mul-function-Group : (f : type-function-Group) → mul-function-Group (inv-function-Group f) f = unit-function-Group left-inverse-law-mul-function-Group = left-inverse-law-mul-Π-Group X (λ _ → G) right-inverse-law-mul-function-Group : (f : type-function-Group) → mul-function-Group f (inv-function-Group f) = unit-function-Group right-inverse-law-mul-function-Group = right-inverse-law-mul-Π-Group X (λ _ → G) is-group-function-Group : is-group-Semigroup semigroup-function-Group is-group-function-Group = is-group-Π-Group X (λ _ → G)
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).
- 2023-03-19. Fredrik Bakke. Make
unused_imports_remover
faster and safer (#512). - 2023-03-13. Egbert Rijke. Products of semigroups, monoids, commutative monoids, groups, abelian groups, semirings, rings, commutative semirings, and commutative rings (#505).