Function groups

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-03-13.
Last modified on 2024-03-11.

module group-theory.function-groups where
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.sets
open import foundation.universe-levels

open import group-theory.dependent-products-groups
open import group-theory.groups
open import group-theory.monoids
open import group-theory.semigroups


Given a group G and a type X, the function group G^X consists of functions from X to the underlying type of G. The group operations are given pointwise.


module _
  {l1 l2 : Level} (G : Group l1) (X : UU l2)

  function-Group : Group (l1  l2)
  function-Group = Π-Group X  _  G)

  semigroup-function-Group : Semigroup (l1  l2)
  semigroup-function-Group = semigroup-Π-Group X  _  G)

  set-function-Group : Set (l1  l2)
  set-function-Group = set-Π-Group X  _  G)

  type-function-Group : UU (l1  l2)
  type-function-Group = type-Π-Group X  _  G)

  mul-function-Group :
    (f g : type-function-Group)  type-function-Group
  mul-function-Group = mul-Π-Group X  _  G)

  associative-mul-function-Group :
    (f g h : type-function-Group) 
    mul-function-Group (mul-function-Group f g) h 
    mul-function-Group f (mul-function-Group g h)
  associative-mul-function-Group =
    associative-mul-Π-Group X  _  G)

  unit-function-Group : type-function-Group
  unit-function-Group = unit-Π-Group X  _  G)

  left-unit-law-mul-function-Group :
    (f : type-function-Group) 
    mul-function-Group unit-function-Group f  f
  left-unit-law-mul-function-Group =
    left-unit-law-mul-Π-Group X  _  G)

  right-unit-law-mul-function-Group :
    (f : type-function-Group) 
    mul-function-Group f unit-function-Group  f
  right-unit-law-mul-function-Group =
    right-unit-law-mul-Π-Group X  _  G)

  is-unital-function-Group :
    is-unital-Semigroup semigroup-function-Group
  is-unital-function-Group = is-unital-Π-Group X  _  G)

  monoid-function-Group : Monoid (l1  l2)
  pr1 monoid-function-Group = semigroup-function-Group
  pr2 monoid-function-Group = is-unital-function-Group

  inv-function-Group : type-function-Group  type-function-Group
  inv-function-Group = inv-Π-Group X  _  G)

  left-inverse-law-mul-function-Group :
    (f : type-function-Group) 
    mul-function-Group (inv-function-Group f) f  unit-function-Group
  left-inverse-law-mul-function-Group =
    left-inverse-law-mul-Π-Group X  _  G)

  right-inverse-law-mul-function-Group :
    (f : type-function-Group) 
    mul-function-Group f (inv-function-Group f)  unit-function-Group
  right-inverse-law-mul-function-Group =
    right-inverse-law-mul-Π-Group X  _  G)

  is-group-function-Group : is-group-Semigroup semigroup-function-Group
  is-group-function-Group = is-group-Π-Group X  _  G)

Recent changes