Equivalences of directed trees
Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2023-01-29.
Last modified on 2024-12-03.
module trees.equivalences-directed-trees where
Imports
open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.contractible-types open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.homotopies open import foundation.identity-types open import foundation.subtype-identity-principle open import foundation.torsorial-type-families open import foundation.transport-along-identifications open import foundation.universe-levels open import graph-theory.equivalences-directed-graphs open import graph-theory.walks-directed-graphs open import trees.directed-trees open import trees.morphisms-directed-trees open import trees.rooted-morphisms-directed-trees
Idea
Equivalences of directed trees are morphisms of directed trees of which the actions on nodes and on edges are both equivalences. In other words, equivalences of directed trees are just equivalences between their underlying directed graphs.
Definitions
The condition of being an equivalence of directed trees
is-equiv-hom-Directed-Tree : {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) → hom-Directed-Tree S T → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-equiv-hom-Directed-Tree S T = is-equiv-hom-Directed-Graph (graph-Directed-Tree S) (graph-Directed-Tree T)
Equivalences of directed trees
equiv-Directed-Tree : {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) equiv-Directed-Tree S T = equiv-Directed-Graph (graph-Directed-Tree S) (graph-Directed-Tree T) equiv-is-equiv-hom-Directed-Tree : {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) → (f : hom-Directed-Tree S T) → is-equiv-hom-Directed-Tree S T f → equiv-Directed-Tree S T equiv-is-equiv-hom-Directed-Tree S T = equiv-is-equiv-hom-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) compute-equiv-Directed-Tree : {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) → equiv-Directed-Tree S T ≃ Σ (hom-Directed-Tree S T) (is-equiv-hom-Directed-Tree S T) compute-equiv-Directed-Tree S T = compute-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) module _ {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) (e : equiv-Directed-Tree S T) where node-equiv-equiv-Directed-Tree : node-Directed-Tree S ≃ node-Directed-Tree T node-equiv-equiv-Directed-Tree = vertex-equiv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) node-equiv-Directed-Tree : node-Directed-Tree S → node-Directed-Tree T node-equiv-Directed-Tree = vertex-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) is-node-equiv-equiv-Directed-Tree : is-equiv node-equiv-Directed-Tree is-node-equiv-equiv-Directed-Tree = is-vertex-equiv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) inv-node-equiv-Directed-Tree : node-Directed-Tree T → node-Directed-Tree S inv-node-equiv-Directed-Tree = inv-vertex-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) is-section-inv-node-equiv-Directed-Tree : ( node-equiv-Directed-Tree ∘ inv-node-equiv-Directed-Tree) ~ id is-section-inv-node-equiv-Directed-Tree = is-section-inv-vertex-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) is-retraction-inv-node-equiv-Directed-Tree : ( inv-node-equiv-Directed-Tree ∘ node-equiv-Directed-Tree) ~ id is-retraction-inv-node-equiv-Directed-Tree = is-retraction-inv-vertex-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) edge-equiv-equiv-Directed-Tree : (x y : node-Directed-Tree S) → edge-Directed-Tree S x y ≃ edge-Directed-Tree T ( node-equiv-Directed-Tree x) ( node-equiv-Directed-Tree y) edge-equiv-equiv-Directed-Tree = edge-equiv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) edge-equiv-Directed-Tree : {x y : node-Directed-Tree S} → edge-Directed-Tree S x y → edge-Directed-Tree T ( node-equiv-Directed-Tree x) ( node-equiv-Directed-Tree y) edge-equiv-Directed-Tree = edge-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) is-edge-equiv-equiv-Directed-Tree : (x y : node-Directed-Tree S) → is-equiv (edge-equiv-Directed-Tree {x} {y}) is-edge-equiv-equiv-Directed-Tree = is-edge-equiv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) hom-equiv-Directed-Tree : hom-Directed-Tree S T hom-equiv-Directed-Tree = hom-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) is-equiv-equiv-Directed-Tree : is-equiv-hom-Directed-Tree S T hom-equiv-Directed-Tree is-equiv-equiv-Directed-Tree = is-equiv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) equiv-direct-predecessor-equiv-Directed-Tree : (x : node-Directed-Tree S) → ( Σ (node-Directed-Tree S) (λ y → edge-Directed-Tree S y x)) ≃ ( Σ ( node-Directed-Tree T) ( λ y → edge-Directed-Tree T y (node-equiv-Directed-Tree x))) equiv-direct-predecessor-equiv-Directed-Tree x = equiv-Σ ( λ y → edge-Directed-Tree T y (node-equiv-Directed-Tree x)) ( node-equiv-equiv-Directed-Tree) ( λ y → edge-equiv-equiv-Directed-Tree y x) direct-predecessor-equiv-Directed-Tree : (x : node-Directed-Tree S) → Σ (node-Directed-Tree S) (λ y → edge-Directed-Tree S y x) → Σ ( node-Directed-Tree T) ( λ y → edge-Directed-Tree T y (node-equiv-Directed-Tree x)) direct-predecessor-equiv-Directed-Tree x = map-equiv (equiv-direct-predecessor-equiv-Directed-Tree x) equiv-walk-equiv-Directed-Tree : {x y : node-Directed-Tree S} → walk-Directed-Tree S x y ≃ walk-Directed-Tree T ( node-equiv-Directed-Tree x) ( node-equiv-Directed-Tree y) equiv-walk-equiv-Directed-Tree = equiv-walk-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) walk-equiv-Directed-Tree : {x y : node-Directed-Tree S} → walk-Directed-Tree S x y → walk-Directed-Tree T ( node-equiv-Directed-Tree x) ( node-equiv-Directed-Tree y) walk-equiv-Directed-Tree = walk-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e)
Identity equivalences of directed trees
id-equiv-Directed-Tree : {l1 l2 : Level} (T : Directed-Tree l1 l2) → equiv-Directed-Tree T T id-equiv-Directed-Tree T = id-equiv-Directed-Graph (graph-Directed-Tree T)
Composition of equivalences of directed trees
module _ {l1 l2 l3 l4 l5 l6 : Level} (R : Directed-Tree l1 l2) (S : Directed-Tree l3 l4) (T : Directed-Tree l5 l6) (g : equiv-Directed-Tree S T) (f : equiv-Directed-Tree R S) where comp-equiv-Directed-Tree : equiv-Directed-Tree R T comp-equiv-Directed-Tree = comp-equiv-Directed-Graph ( graph-Directed-Tree R) ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( g) ( f) node-equiv-comp-equiv-Directed-Tree : node-Directed-Tree R ≃ node-Directed-Tree T node-equiv-comp-equiv-Directed-Tree = node-equiv-equiv-Directed-Tree R T comp-equiv-Directed-Tree node-comp-equiv-Directed-Tree : node-Directed-Tree R → node-Directed-Tree T node-comp-equiv-Directed-Tree = node-equiv-Directed-Tree R T comp-equiv-Directed-Tree edge-equiv-comp-equiv-Directed-Tree : (x y : node-Directed-Tree R) → edge-Directed-Tree R x y ≃ edge-Directed-Tree T ( node-comp-equiv-Directed-Tree x) ( node-comp-equiv-Directed-Tree y) edge-equiv-comp-equiv-Directed-Tree = edge-equiv-equiv-Directed-Tree R T comp-equiv-Directed-Tree edge-comp-equiv-Directed-Tree : {x y : node-Directed-Tree R} → edge-Directed-Tree R x y → edge-Directed-Tree T ( node-comp-equiv-Directed-Tree x) ( node-comp-equiv-Directed-Tree y) edge-comp-equiv-Directed-Tree = edge-equiv-Directed-Tree R T comp-equiv-Directed-Tree
Homotopies of equivalences of directed trees
module _ {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) (f g : equiv-Directed-Tree S T) where htpy-equiv-Directed-Tree : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) htpy-equiv-Directed-Tree = htpy-hom-Directed-Tree S T ( hom-equiv-Directed-Tree S T f) ( hom-equiv-Directed-Tree S T g) node-htpy-equiv-Directed-Tree : htpy-equiv-Directed-Tree → node-equiv-Directed-Tree S T f ~ node-equiv-Directed-Tree S T g node-htpy-equiv-Directed-Tree = node-htpy-hom-Directed-Tree S T ( hom-equiv-Directed-Tree S T f) ( hom-equiv-Directed-Tree S T g) edge-htpy-equiv-Directed-Tree : (α : htpy-equiv-Directed-Tree) (x y : node-Directed-Tree S) (e : edge-Directed-Tree S x y) → binary-tr ( edge-Directed-Tree T) ( node-htpy-equiv-Directed-Tree α x) ( node-htpy-equiv-Directed-Tree α y) ( edge-equiv-Directed-Tree S T f e) = edge-equiv-Directed-Tree S T g e edge-htpy-equiv-Directed-Tree = edge-htpy-hom-Directed-Tree S T ( hom-equiv-Directed-Tree S T f) ( hom-equiv-Directed-Tree S T g)
The reflexivity homotopy of equivalences of directed trees
refl-htpy-equiv-Directed-Tree : {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) (f : equiv-Directed-Tree S T) → htpy-equiv-Directed-Tree S T f f refl-htpy-equiv-Directed-Tree S T f = refl-htpy-hom-Directed-Tree S T (hom-equiv-Directed-Tree S T f)
Properties
Homotopies characterize the identity type of equivalences of directed trees
module _ {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) (e : equiv-Directed-Tree S T) where is-torsorial-htpy-equiv-Directed-Tree : is-torsorial (htpy-equiv-Directed-Tree S T e) is-torsorial-htpy-equiv-Directed-Tree = is-torsorial-htpy-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) htpy-eq-equiv-Directed-Tree : (f : equiv-Directed-Tree S T) → (e = f) → htpy-equiv-Directed-Tree S T e f htpy-eq-equiv-Directed-Tree = htpy-eq-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) is-equiv-htpy-eq-equiv-Directed-Tree : (f : equiv-Directed-Tree S T) → is-equiv (htpy-eq-equiv-Directed-Tree f) is-equiv-htpy-eq-equiv-Directed-Tree = is-equiv-htpy-eq-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) extensionality-equiv-Directed-Tree : (f : equiv-Directed-Tree S T) → (e = f) ≃ htpy-equiv-Directed-Tree S T e f extensionality-equiv-Directed-Tree = extensionality-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e) eq-htpy-equiv-Directed-Tree : (f : equiv-Directed-Tree S T) → htpy-equiv-Directed-Tree S T e f → e = f eq-htpy-equiv-Directed-Tree = eq-htpy-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( e)
Equivalences of directed trees preserve the root
module _ {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) (f : hom-Directed-Tree S T) where preserves-root-is-equiv-node-hom-Directed-Tree : is-equiv (node-hom-Directed-Tree S T f) → preserves-root-hom-Directed-Tree S T f preserves-root-is-equiv-node-hom-Directed-Tree H = ( inv (is-section-map-inv-is-equiv H (root-Directed-Tree T))) ∙ ( inv ( ap ( node-hom-Directed-Tree S T f) ( is-root-is-root-node-hom-Directed-Tree S T f ( map-inv-is-equiv H (root-Directed-Tree T)) ( inv (is-section-map-inv-is-equiv H (root-Directed-Tree T)))))) module _ {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) (e : equiv-Directed-Tree S T) where preserves-root-equiv-Directed-Tree : preserves-root-hom-Directed-Tree S T (hom-equiv-Directed-Tree S T e) preserves-root-equiv-Directed-Tree = preserves-root-is-equiv-node-hom-Directed-Tree S T ( hom-equiv-Directed-Tree S T e) ( is-node-equiv-equiv-Directed-Tree S T e) rooted-hom-equiv-Directed-Tree : rooted-hom-Directed-Tree S T pr1 rooted-hom-equiv-Directed-Tree = hom-equiv-Directed-Tree S T e pr2 rooted-hom-equiv-Directed-Tree = preserves-root-equiv-Directed-Tree
Equivalences characterize identifications of trees
module _ {l1 l2 : Level} (T : Directed-Tree l1 l2) where extensionality-Directed-Tree : (S : Directed-Tree l1 l2) → (T = S) ≃ equiv-Directed-Tree T S extensionality-Directed-Tree = extensionality-type-subtype ( is-tree-directed-graph-Prop) ( is-tree-Directed-Tree T) ( id-equiv-Directed-Graph (graph-Directed-Tree T)) ( extensionality-Directed-Graph (graph-Directed-Tree T)) equiv-eq-Directed-Tree : (S : Directed-Tree l1 l2) → (T = S) → equiv-Directed-Tree T S equiv-eq-Directed-Tree S = map-equiv (extensionality-Directed-Tree S) eq-equiv-Directed-Tree : (S : Directed-Tree l1 l2) → equiv-Directed-Tree T S → (T = S) eq-equiv-Directed-Tree S = map-inv-equiv (extensionality-Directed-Tree S) is-torsorial-equiv-Directed-Tree : is-torsorial (equiv-Directed-Tree T) is-torsorial-equiv-Directed-Tree = is-contr-equiv' ( Σ (Directed-Tree l1 l2) (λ S → T = S)) ( equiv-tot extensionality-Directed-Tree) ( is-torsorial-Id T)
A morphism of directed trees is an equivalence if it is an equivalence on the nodes
module _ {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) (f : hom-Directed-Tree S T) where is-equiv-total-edge-is-equiv-node-hom-Directed-Tree : is-equiv (node-hom-Directed-Tree S T f) → (x : node-Directed-Tree S) → is-equiv ( map-Σ ( edge-Directed-Tree T (node-hom-Directed-Tree S T f x)) ( node-hom-Directed-Tree S T f) ( λ y → edge-hom-Directed-Tree S T f {x} {y})) is-equiv-total-edge-is-equiv-node-hom-Directed-Tree H x with is-isolated-root-Directed-Tree S x ... | inl refl = is-equiv-is-empty _ ( λ u → no-direct-successor-root-Directed-Tree T ( tr ( λ v → Σ (node-Directed-Tree T) (edge-Directed-Tree T v)) ( inv (preserves-root-is-equiv-node-hom-Directed-Tree S T f H)) ( u))) ... | inr p = is-equiv-is-contr _ ( unique-direct-successor-is-proper-node-Directed-Tree S x p) ( unique-direct-successor-is-proper-node-Directed-Tree T ( node-hom-Directed-Tree S T f x) ( is-not-root-node-hom-is-not-root-Directed-Tree S T f x p)) is-equiv-is-equiv-node-hom-Directed-Tree : is-equiv (node-hom-Directed-Tree S T f) → is-equiv-hom-Directed-Tree S T f pr1 (is-equiv-is-equiv-node-hom-Directed-Tree H) = H pr2 (is-equiv-is-equiv-node-hom-Directed-Tree H) x = is-fiberwise-equiv-is-equiv-map-Σ ( edge-Directed-Tree T (node-hom-Directed-Tree S T f x)) ( node-hom-Directed-Tree S T f) ( λ y → edge-hom-Directed-Tree S T f {x} {y}) ( H) ( is-equiv-total-edge-is-equiv-node-hom-Directed-Tree H x)
The inverse of an equivalence of directed trees
module _ {l1 l2 l3 l4 : Level} (S : Directed-Tree l1 l2) (T : Directed-Tree l3 l4) (f : equiv-Directed-Tree S T) where inv-equiv-Directed-Tree : equiv-Directed-Tree T S inv-equiv-Directed-Tree = inv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) hom-inv-equiv-Directed-Tree : hom-Directed-Tree T S hom-inv-equiv-Directed-Tree = hom-inv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) node-equiv-inv-equiv-Directed-Tree : node-Directed-Tree T ≃ node-Directed-Tree S node-equiv-inv-equiv-Directed-Tree = vertex-equiv-inv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) node-inv-equiv-Directed-Tree : node-Directed-Tree T → node-Directed-Tree S node-inv-equiv-Directed-Tree = vertex-inv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) edge-inv-equiv-Directed-Tree : {x y : node-Directed-Tree T} → edge-Directed-Tree T x y → edge-Directed-Tree S ( node-inv-equiv-Directed-Tree x) ( node-inv-equiv-Directed-Tree y) edge-inv-equiv-Directed-Tree = edge-inv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) edge-equiv-inv-equiv-Directed-Tree : (x y : node-Directed-Tree T) → edge-Directed-Tree T x y ≃ edge-Directed-Tree S ( node-inv-equiv-Directed-Tree x) ( node-inv-equiv-Directed-Tree y) edge-equiv-inv-equiv-Directed-Tree = edge-equiv-inv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) is-section-inv-equiv-Directed-Tree : htpy-equiv-Directed-Tree T T ( comp-equiv-Directed-Tree T S T f inv-equiv-Directed-Tree) ( id-equiv-Directed-Tree T) is-section-inv-equiv-Directed-Tree = is-section-inv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f) is-retraction-inv-equiv-Directed-Tree : htpy-equiv-Directed-Tree S S ( comp-equiv-Directed-Tree S T S inv-equiv-Directed-Tree f) ( id-equiv-Directed-Tree S) is-retraction-inv-equiv-Directed-Tree = is-retraction-inv-equiv-Directed-Graph ( graph-Directed-Tree S) ( graph-Directed-Tree T) ( f)
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).
- 2024-01-31. Fredrik Bakke. Rename
is-torsorial-path
tois-torsorial-Id
(#1016). - 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875). - 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871). - 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).