Functoriality of metric quotients of pseudometric spaces and isometries
Content created by malarbol.
Created on 2026-02-04.
Last modified on 2026-02-04.
{-# OPTIONS --lossy-unification #-} module metric-spaces.functoriality-isometries-metric-quotients-of-pseudometric-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import metric-spaces.isometries-metric-spaces open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-quotients-of-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.short-maps-metric-spaces open import metric-spaces.unit-map-metric-quotients-of-pseudometric-spaces open import metric-spaces.universal-property-isometries-metric-quotients-of-pseudometric-spaces
Idea
Postcomposition with the unit map of metric quotients,
q : Q → [Q]
maps isometries f : P → Q from a pseudometric spaces P to isometries
q ∘ f : P → [Q]. By the
universal property of metric quotients and isometries,
these factor as isometries q⋆f : [P] → [Q]. This action preserves the identity
and composition of isometries and induce commutative diagrams
f g
P ------> Q ------> R
| | |
| | |
| | |
v v v
[P] ----> [Q] ----> [R]
[f] [g]
This is the functorial action¶ of metric quotients on isometries.
Definitions
Postcomposition of isometries by the unit isometry of metric quotients
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (Q : Pseudometric-Space l1' l2') where postcomp-isometry-unit-metric-quotient-Pseudometric-Space : isometry-Pseudometric-Space P Q → isometry-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space Q) postcomp-isometry-unit-metric-quotient-Pseudometric-Space = comp-isometry-Pseudometric-Space ( P) ( Q) ( pseudometric-metric-quotient-Pseudometric-Space Q) ( isometry-unit-metric-quotient-Pseudometric-Space Q)
Action of metric quotients on isometries between pseudometric spaces
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (Q : Pseudometric-Space l1' l2') where isometry-metric-quotient-Pseudometric-Space : isometry-Pseudometric-Space P Q → isometry-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) isometry-metric-quotient-Pseudometric-Space f = isometry-exten-isometry-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space Q) ( postcomp-isometry-unit-metric-quotient-Pseudometric-Space P Q f) short-map-isometry-metric-quotient-Pseudometric-Space : isometry-Pseudometric-Space P Q → short-map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) short-map-isometry-metric-quotient-Pseudometric-Space = short-map-isometry-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) ∘ isometry-metric-quotient-Pseudometric-Space map-isometry-metric-quotient-Pseudometric-Space : isometry-Pseudometric-Space P Q → map-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) map-isometry-metric-quotient-Pseudometric-Space = map-isometry-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) ∘ isometry-metric-quotient-Pseudometric-Space
Properties
The action of metric quotients on isometries is natural
module _ {l1 l2 l1' l2' : Level} (P : Pseudometric-Space l1 l2) (Q : Pseudometric-Space l1' l2') (f : isometry-Pseudometric-Space P Q) where coh-square-map-isometry-metric-quotient-Pseudometric-Space : ( map-isometry-metric-quotient-Pseudometric-Space P Q f ∘ map-unit-metric-quotient-Pseudometric-Space P) ~ ( map-unit-metric-quotient-Pseudometric-Space Q ∘ map-isometry-Pseudometric-Space P Q f) coh-square-map-isometry-metric-quotient-Pseudometric-Space = is-extension-exten-isometry-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space Q) ( postcomp-isometry-unit-metric-quotient-Pseudometric-Space P Q f) coh-square-isometry-metric-quotient-Pseudometric-Space : comp-isometry-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space P) ( pseudometric-metric-quotient-Pseudometric-Space Q) ( isometry-metric-quotient-Pseudometric-Space P Q f) ( isometry-unit-metric-quotient-Pseudometric-Space P) = comp-isometry-Pseudometric-Space ( P) ( Q) ( pseudometric-metric-quotient-Pseudometric-Space Q) ( isometry-unit-metric-quotient-Pseudometric-Space Q) ( f) coh-square-isometry-metric-quotient-Pseudometric-Space = eq-htpy-map-isometry-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space Q) ( comp-isometry-Pseudometric-Space ( P) ( pseudometric-metric-quotient-Pseudometric-Space P) ( pseudometric-metric-quotient-Pseudometric-Space Q) ( isometry-metric-quotient-Pseudometric-Space P Q f) ( isometry-unit-metric-quotient-Pseudometric-Space P)) ( comp-isometry-Pseudometric-Space ( P) ( Q) ( pseudometric-metric-quotient-Pseudometric-Space Q) ( isometry-unit-metric-quotient-Pseudometric-Space Q) ( f)) ( coh-square-map-isometry-metric-quotient-Pseudometric-Space)
The action on isometries of metric quotients preserves the identity
module _ {l1 l2 : Level} (P : Pseudometric-Space l1 l2) where abstract exten-id-isometry-metric-quotient-Pseudometric-Space : extension-isometry-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space P) ( isometry-unit-metric-quotient-Pseudometric-Space P) pr1 exten-id-isometry-metric-quotient-Pseudometric-Space = id-isometry-Metric-Space (metric-quotient-Pseudometric-Space P) pr2 exten-id-isometry-metric-quotient-Pseudometric-Space = refl-htpy htpy-id-isometry-metric-quotient-Pseudometric-Space : ( map-isometry-metric-quotient-Pseudometric-Space P P ( id-isometry-Pseudometric-Space P)) ~ ( id) htpy-id-isometry-metric-quotient-Pseudometric-Space = all-htpy-map-extension-isometry-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space P) ( isometry-unit-metric-quotient-Pseudometric-Space P) ( exten-id-isometry-metric-quotient-Pseudometric-Space) preserves-id-isometry-metric-quotient-Pseudometric-Space : isometry-metric-quotient-Pseudometric-Space P P ( id-isometry-Pseudometric-Space P) = id-isometry-Metric-Space ( metric-quotient-Pseudometric-Space P) preserves-id-isometry-metric-quotient-Pseudometric-Space = eq-htpy-map-isometry-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space P) ( htpy-id-isometry-metric-quotient-Pseudometric-Space)
The action on isometries of metric quotients preserves composition
module _ {lp lp' lq lq' lr lr' : Level} (P : Pseudometric-Space lp lp') (Q : Pseudometric-Space lq lq') (R : Pseudometric-Space lr lr') (g : isometry-Pseudometric-Space Q R) (f : isometry-Pseudometric-Space P Q) where abstract exten-comp-isometry-metric-quotient-Pseudometric-Space : extension-isometry-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space R) ( postcomp-isometry-unit-metric-quotient-Pseudometric-Space ( P) ( R) ( comp-isometry-Pseudometric-Space P Q R g f)) pr1 exten-comp-isometry-metric-quotient-Pseudometric-Space = comp-isometry-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) ( metric-quotient-Pseudometric-Space R) ( isometry-metric-quotient-Pseudometric-Space Q R g) ( isometry-metric-quotient-Pseudometric-Space P Q f) pr2 exten-comp-isometry-metric-quotient-Pseudometric-Space = ( map-isometry-metric-quotient-Pseudometric-Space Q R g) ·l ( coh-square-map-isometry-metric-quotient-Pseudometric-Space P Q f) ∙h ( coh-square-map-isometry-metric-quotient-Pseudometric-Space Q R g) ·r ( map-isometry-Pseudometric-Space P Q f) htpy-comp-map-metric-quotient-isometry-Pseudometric-Space : ( map-isometry-metric-quotient-Pseudometric-Space P R ( comp-isometry-Pseudometric-Space P Q R g f)) ~ ( map-isometry-metric-quotient-Pseudometric-Space Q R g ∘ map-isometry-metric-quotient-Pseudometric-Space P Q f) htpy-comp-map-metric-quotient-isometry-Pseudometric-Space = all-htpy-map-extension-isometry-metric-quotient-Pseudometric-Space ( P) ( metric-quotient-Pseudometric-Space R) ( postcomp-isometry-unit-metric-quotient-Pseudometric-Space P R ( comp-isometry-Pseudometric-Space P Q R g f)) ( exten-comp-isometry-metric-quotient-Pseudometric-Space) preserves-comp-isometry-metric-quotient-Pseudometric-Space : ( isometry-metric-quotient-Pseudometric-Space P R ( comp-isometry-Pseudometric-Space P Q R g f)) = ( comp-isometry-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space Q) ( metric-quotient-Pseudometric-Space R) ( isometry-metric-quotient-Pseudometric-Space Q R g) ( isometry-metric-quotient-Pseudometric-Space P Q f)) preserves-comp-isometry-metric-quotient-Pseudometric-Space = eq-htpy-map-isometry-Metric-Space ( metric-quotient-Pseudometric-Space P) ( metric-quotient-Pseudometric-Space R) ( htpy-comp-map-metric-quotient-isometry-Pseudometric-Space)
Recent changes
- 2026-02-04. malarbol. Functoriality of metric quotients and isometries (#1807).