Cofinal and coinitial endomaps on the real numbers
Content created by Louis Wasserman.
Created on 2026-02-07.
Last modified on 2026-02-07.
module real-numbers.cofinal-and-coinitial-endomaps-real-numbers where
Imports
open import elementary-number-theory.rational-numbers open import foundation.conjunction open import foundation.existential-quantification open import foundation.propositions open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.rational-real-numbers
Idea
An endomap f on the
real numbers is
- cofinal¶
if for every rational
q, there existsxsuch thatq ≤ f x - coinitial¶
if for every rational
q, there existsxsuch thatf x ≤ q
Definition
module _ {l1 l2 : Level} (f : ℝ l1 → ℝ l2) where is-cofinal-prop-endomap-ℝ : Prop (lsuc l1 ⊔ l2) is-cofinal-prop-endomap-ℝ = Π-Prop ℚ (λ q → ∃ (ℝ l1) (λ x → leq-prop-ℝ (real-ℚ q) (f x))) is-cofinal-endomap-ℝ : UU (lsuc l1 ⊔ l2) is-cofinal-endomap-ℝ = type-Prop is-cofinal-prop-endomap-ℝ is-coinitial-prop-endomap-ℝ : Prop (lsuc l1 ⊔ l2) is-coinitial-prop-endomap-ℝ = Π-Prop ℚ (λ q → ∃ (ℝ l1) (λ x → leq-prop-ℝ (f x) (real-ℚ q))) is-coinitial-endomap-ℝ : UU (lsuc l1 ⊔ l2) is-coinitial-endomap-ℝ = type-Prop is-coinitial-prop-endomap-ℝ is-cofinal-and-coinitial-prop-endomap-ℝ : Prop (lsuc l1 ⊔ l2) is-cofinal-and-coinitial-prop-endomap-ℝ = is-cofinal-prop-endomap-ℝ ∧ is-coinitial-prop-endomap-ℝ is-cofinal-and-coinitial-endomap-ℝ : UU (lsuc l1 ⊔ l2) is-cofinal-and-coinitial-endomap-ℝ = type-Prop is-cofinal-and-coinitial-prop-endomap-ℝ
Recent changes
- 2026-02-07. Louis Wasserman. Odd roots of real numbers (#1739).