Free groups with one generator

Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.

Created on 2022-08-17.
Last modified on 2023-11-24.

module where
open import elementary-number-theory.addition-integers
open import
open import elementary-number-theory.integers

open import foundation.action-on-identifications-functions
open import foundation.contractible-maps
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.identity-types
open import foundation.sets
open import foundation.subtypes
open import foundation.torsorial-type-families
open import foundation.universe-levels

open import group-theory.groups
open import group-theory.homomorphisms-groups
open import group-theory.integer-powers-of-elements-groups

open import structured-types.initial-pointed-type-equipped-with-automorphism


A group F equipped with an element x : F is said to satisfy the universal property of the free group with one generator if for every group G the map

  hom-Group F G → type-Group G

given by h ↦ h x is an equivalence. The group of integers is a free group with one generator.


ev-element-hom-Group :
  {l1 l2 : Level} (G : Group l1) (H : Group l2) (g : type-Group G) 
  hom-Group G H  type-Group H
ev-element-hom-Group G H g f = map-hom-Group G H f g

is-free-group-with-one-generator :
  {l1 : Level} (F : Group l1) (x : type-Group F)  UUω
is-free-group-with-one-generator F x =
  {l2 : Level} (G : Group l2)  is-equiv (ev-element-hom-Group F G x)


The group of integers is the free group with one generator

module _
  {l : Level} (G : Group l) (g : type-Group G)

  map-hom-element-Group :   type-Group G
  map-hom-element-Group k = integer-power-Group G k g

  preserves-unit-hom-element-Group :
    map-hom-element-Group zero-ℤ  unit-Group G
  preserves-unit-hom-element-Group = integer-power-zero-Group G g

  preserves-mul-map-hom-element-Group :
    (x y : ) 
    ( map-hom-element-Group (x +ℤ y)) 
    ( mul-Group G (map-hom-element-Group x) (map-hom-element-Group y))
  preserves-mul-map-hom-element-Group =
    distributive-integer-power-add-Group G g

  hom-element-Group : hom-Group ℤ-Group G
  pr1 hom-element-Group = map-hom-element-Group
  pr2 hom-element-Group {x} {y} = preserves-mul-map-hom-element-Group x y

  htpy-hom-element-Group :
    (h : hom-Group ℤ-Group G)  map-hom-Group ℤ-Group G h one-ℤ  g 
    htpy-hom-Group ℤ-Group G hom-element-Group h
  htpy-hom-element-Group h p =
      ( pointed-type-Group G , equiv-mul-Group G g)
      ( pair
        ( map-hom-Group ℤ-Group G h)
        ( pair
          ( preserves-unit-hom-Group ℤ-Group G h)
          ( λ x 
            ( ap
              ( map-hom-Group ℤ-Group G h)
              ( is-left-add-one-succ-ℤ x)) 
            ( preserves-mul-hom-Group ℤ-Group G h) 
            ( ap ( mul-Group' G (map-hom-Group ℤ-Group G h x)) p))))

  is-torsorial-hom-element-Group :
    is-torsorial  h  map-hom-Group ℤ-Group G h one-ℤ  g)
  pr1 (pr1 is-torsorial-hom-element-Group) =
  pr2 (pr1 is-torsorial-hom-element-Group) =
    right-unit-law-mul-Group G g
  pr2 is-torsorial-hom-element-Group (h , p) =
      ( λ f  Id-Prop (set-Group G) (map-hom-Group ℤ-Group G f one-ℤ) g)
      ( eq-htpy-hom-Group ℤ-Group G
        ( htpy-hom-element-Group h p))

  is-free-group-with-one-generator-ℤ :
    is-free-group-with-one-generator ℤ-Group one-ℤ
  is-free-group-with-one-generator-ℤ G =
    is-equiv-is-contr-map (is-torsorial-hom-element-Group G)

Recent changes