The absolute value of real numbers
Content created by Louis Wasserman, Fredrik Bakke and malarbol.
Created on 2025-03-26.
Last modified on 2025-05-05.
{-# OPTIONS --lossy-unification #-} module real-numbers.absolute-value-real-numbers where
Imports
open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.empty-types open import foundation.function-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.short-functions-metric-spaces open import real-numbers.addition-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.maximum-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers
Idea
The absolute value¶ of a real number is the maximum of it and its negation. The absolute value is a short function of the metric space of real numbers.
opaque abs-ℝ : {l : Level} → ℝ l → ℝ l abs-ℝ x = max-ℝ x (neg-ℝ x)
Properties
The absolute value preserves similarity
opaque unfolding abs-ℝ preserves-sim-abs-ℝ : {l1 l2 : Level} {x : ℝ l1} {x' : ℝ l2} → sim-ℝ x x' → sim-ℝ (abs-ℝ x) (abs-ℝ x') preserves-sim-abs-ℝ x~x' = preserves-sim-max-ℝ _ _ x~x' _ _ (preserves-sim-neg-ℝ x~x')
The absolute value of a real number is nonnegative
opaque unfolding abs-ℝ is-nonnegative-abs-ℝ : {l : Level} → (x : ℝ l) → is-nonnegative-ℝ (abs-ℝ x) is-nonnegative-abs-ℝ x q q<0 = elim-disjunction ( lower-cut-ℝ (abs-ℝ x) q) ( id) ( λ (x<0 , 0<x) → ex-falso (is-disjoint-cut-ℝ x zero-ℚ (0<x , x<0))) ( is-located-lower-upper-cut-ℝ (abs-ℝ x) q zero-ℚ q<0)
The absolute value of the negation of a real number is its absolute value
opaque unfolding abs-ℝ abs-neg-ℝ : {l : Level} → (x : ℝ l) → abs-ℝ (neg-ℝ x) = abs-ℝ x abs-neg-ℝ x = ap (max-ℝ (neg-ℝ x)) (neg-neg-ℝ x) ∙ commutative-max-ℝ _ _
x
is between -|x|
and |x|
module _ {l : Level} (x : ℝ l) where opaque unfolding abs-ℝ leq-abs-ℝ : leq-ℝ x (abs-ℝ x) leq-abs-ℝ = leq-left-max-ℝ x (neg-ℝ x) neg-leq-abs-ℝ : leq-ℝ (neg-ℝ x) (abs-ℝ x) neg-leq-abs-ℝ = leq-right-max-ℝ x (neg-ℝ x) leq-neg-abs-ℝ : leq-ℝ (neg-ℝ (abs-ℝ x)) x leq-neg-abs-ℝ = tr ( leq-ℝ (neg-ℝ (abs-ℝ x))) ( neg-neg-ℝ x) ( neg-leq-ℝ (neg-ℝ x) (abs-ℝ x) neg-leq-abs-ℝ) neg-leq-neg-abs-ℝ : leq-ℝ (neg-ℝ (abs-ℝ x)) (neg-ℝ x) neg-leq-neg-abs-ℝ = neg-leq-ℝ x (abs-ℝ x) leq-abs-ℝ
If x ≤ y
and -x ≤ y
, |x| ≤ y
module _ {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) where opaque unfolding abs-ℝ leq-abs-leq-leq-neg-ℝ : leq-ℝ x y → leq-ℝ (neg-ℝ x) y → leq-ℝ (abs-ℝ x) y leq-abs-leq-leq-neg-ℝ = leq-max-leq-leq-ℝ x (neg-ℝ x) y
Triangle inequality
module _ {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) where abstract triangle-inequality-abs-ℝ : leq-ℝ (abs-ℝ (x +ℝ y)) (abs-ℝ x +ℝ abs-ℝ y) triangle-inequality-abs-ℝ = leq-abs-leq-leq-neg-ℝ ( x +ℝ y) ( abs-ℝ x +ℝ abs-ℝ y) ( preserves-leq-add-ℝ ( x) ( abs-ℝ x) ( y) ( abs-ℝ y) ( leq-abs-ℝ x) ( leq-abs-ℝ y)) ( inv-tr ( λ z → leq-ℝ z (abs-ℝ x +ℝ abs-ℝ y)) ( distributive-neg-add-ℝ x y) ( preserves-leq-add-ℝ ( neg-ℝ x) ( abs-ℝ x) ( neg-ℝ y) ( abs-ℝ y) ( neg-leq-abs-ℝ x) ( neg-leq-abs-ℝ y)))
The absolute value is a short function
module _ {l : Level} where abstract is-short-abs-ℝ : is-short-function-Metric-Space ( metric-space-leq-ℝ l) ( metric-space-leq-ℝ l) ( abs-ℝ) is-short-abs-ℝ d x y I = neighborhood-real-bound-each-leq-ℝ ( d) ( abs-ℝ x) ( abs-ℝ y) ( leq-abs-leq-leq-neg-ℝ ( x) ( abs-ℝ y +ℝ real-ℚ (rational-ℚ⁺ d)) ( transitive-leq-ℝ ( x) ( y +ℝ real-ℚ (rational-ℚ⁺ d)) ( abs-ℝ y +ℝ real-ℚ (rational-ℚ⁺ d)) ( preserves-leq-right-add-ℝ ( real-ℚ (rational-ℚ⁺ d)) ( y) ( abs-ℝ y) ( leq-abs-ℝ y)) ( left-real-bound-neighborhood-leq-ℝ d x y I)) ( transitive-leq-ℝ ( neg-ℝ x) ( neg-ℝ y +ℝ real-ℚ (rational-ℚ⁺ d)) ( abs-ℝ y +ℝ real-ℚ (rational-ℚ⁺ d)) ( preserves-leq-right-add-ℝ ( real-ℚ (rational-ℚ⁺ d)) ( neg-ℝ y) ( abs-ℝ y) ( neg-leq-abs-ℝ y)) ( reverses-lower-neighborhood-leq-neg-ℝ ( d) ( y) ( x) ( right-real-bound-neighborhood-leq-ℝ d x y I)))) ( leq-abs-leq-leq-neg-ℝ ( y) ( abs-ℝ x +ℝ real-ℚ (rational-ℚ⁺ d)) ( transitive-leq-ℝ ( y) ( x +ℝ real-ℚ (rational-ℚ⁺ d)) ( abs-ℝ x +ℝ real-ℚ (rational-ℚ⁺ d)) ( preserves-leq-right-add-ℝ ( real-ℚ (rational-ℚ⁺ d)) ( x) ( abs-ℝ x) ( leq-abs-ℝ x)) ( right-real-bound-neighborhood-leq-ℝ d x y I)) ( transitive-leq-ℝ ( neg-ℝ y) ( neg-ℝ x +ℝ real-ℚ (rational-ℚ⁺ d)) ( abs-ℝ x +ℝ real-ℚ (rational-ℚ⁺ d)) ( preserves-leq-right-add-ℝ ( real-ℚ (rational-ℚ⁺ d)) ( neg-ℝ x) ( abs-ℝ x) ( neg-leq-abs-ℝ x)) ( reverses-lower-neighborhood-leq-neg-ℝ ( d) ( x) ( y) ( left-real-bound-neighborhood-leq-ℝ d x y I)))) short-abs-ℝ : short-function-Metric-Space (metric-space-leq-ℝ l) (metric-space-leq-ℝ l) short-abs-ℝ = (abs-ℝ , is-short-abs-ℝ)
External links
- Absolute value at Wikidata
Recent changes
- 2025-05-05. malarbol. Metric properties of real negation, absolute value, addition and maximum (#1398).
- 2025-04-25. Louis Wasserman. Distance function on real numbers (#1394).
- 2025-03-26. Louis Wasserman and Fredrik Bakke. Absolute value of real numbers (#1385).