The absolute value of real numbers
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2025-03-26.
Last modified on 2025-03-26.
{-# OPTIONS --lossy-unification #-} module real-numbers.absolute-value-real-numbers where
Imports
open import elementary-number-theory.rational-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.empty-types open import foundation.function-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.maximum-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.nonnegative-real-numbers
Idea
The absolute value¶ of a real number is the maximum of it and its negation.
abs-ℝ : {l : Level} → ℝ l → ℝ l abs-ℝ x = binary-max-ℝ x (neg-ℝ x)
Properties
The absolute value of a real number is nonnegative
abstract is-nonnegative-abs-ℝ : {l : Level} → (x : ℝ l) → is-nonnegative-ℝ (abs-ℝ x) is-nonnegative-abs-ℝ x q q<0 = elim-disjunction ( lower-cut-ℝ (abs-ℝ x) q) ( id) ( λ (x<0 , 0<x) → ex-falso (is-disjoint-cut-ℝ x zero-ℚ (0<x , x<0))) ( is-located-lower-upper-cut-ℝ (abs-ℝ x) q zero-ℚ q<0)
The absolute value of the negation of a real number is its absolute value
abstract abs-neg-ℝ : {l : Level} → (x : ℝ l) → abs-ℝ (neg-ℝ x) = abs-ℝ x abs-neg-ℝ x = ap (binary-max-ℝ (neg-ℝ x)) (neg-neg-ℝ x) ∙ commutative-binary-max-ℝ _ _
x
is between -|x|
and |x|
module _ {l : Level} (x : ℝ l) where abstract leq-abs-ℝ : leq-ℝ x (abs-ℝ x) leq-abs-ℝ = leq-left-binary-max-ℝ x (neg-ℝ x) neg-leq-abs-ℝ : leq-ℝ (neg-ℝ x) (abs-ℝ x) neg-leq-abs-ℝ = leq-right-binary-max-ℝ x (neg-ℝ x) leq-neg-abs-ℝ : leq-ℝ (neg-ℝ (abs-ℝ x)) x leq-neg-abs-ℝ = tr ( leq-ℝ (neg-ℝ (abs-ℝ x))) ( neg-neg-ℝ x) ( neg-leq-ℝ (neg-ℝ x) (abs-ℝ x) neg-leq-abs-ℝ) neg-leq-neg-abs-ℝ : leq-ℝ (neg-ℝ (abs-ℝ x)) (neg-ℝ x) neg-leq-neg-abs-ℝ = neg-leq-ℝ x (abs-ℝ x) leq-abs-ℝ
External links
- Absolute value at Wikidata
Recent changes
- 2025-03-26. Louis Wasserman and Fredrik Bakke. Absolute value of real numbers (#1385).