Morphisms of finite species
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-03-21.
Last modified on 2024-03-11.
module species.morphisms-finite-species where
Imports
open import foundation.dependent-pair-types open import foundation.equality-dependent-function-types open import foundation.equivalences open import foundation.function-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.homotopy-induction open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.torsorial-type-families open import foundation.universe-levels open import species.species-of-finite-types open import univalent-combinatorics.finite-types
Idea
A homomorphism between two finite species is a pointwise family of maps.
Definitions
The type of morphisms between finite species
hom-species-𝔽 : {l1 l2 l3 : Level} → species-𝔽 l1 l2 → species-𝔽 l1 l3 → UU (lsuc l1 ⊔ l2 ⊔ l3) hom-species-𝔽 {l1} F G = (X : 𝔽 l1) → type-𝔽 (F X) → type-𝔽 (G X)
The identity morphisms of finite species
id-hom-species-𝔽 : {l1 l2 : Level} (F : species-𝔽 l1 l2) → hom-species-𝔽 F F id-hom-species-𝔽 F = λ X x → x
Composition of morphisms of finite species
comp-hom-species-𝔽 : {l1 l2 l3 l4 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (H : species-𝔽 l1 l4) → hom-species-𝔽 G H → hom-species-𝔽 F G → hom-species-𝔽 F H comp-hom-species-𝔽 F G H f g X = (f X) ∘ (g X)
Homotopies of morphisms of finite species
htpy-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) → (hom-species-𝔽 F G) → (hom-species-𝔽 F G) → UU (lsuc l1 ⊔ l2 ⊔ l3) htpy-hom-species-𝔽 {l1} F G f g = (X : 𝔽 l1) → (f X) ~ (g X) refl-htpy-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) → (f : hom-species-𝔽 F G) → htpy-hom-species-𝔽 F G f f refl-htpy-hom-species-𝔽 F G f X = refl-htpy
Properties
Associativity of composition of homomorphisms of finite species
module _ {l1 l2 l3 l4 l5 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (H : species-𝔽 l1 l4) (K : species-𝔽 l1 l5) where associative-comp-hom-species-𝔽 : (h : hom-species-𝔽 H K) (g : hom-species-𝔽 G H) (f : hom-species-𝔽 F G) → comp-hom-species-𝔽 F G K (comp-hom-species-𝔽 G H K h g) f = comp-hom-species-𝔽 F H K h (comp-hom-species-𝔽 F G H g f) associative-comp-hom-species-𝔽 h g f = refl
The unit laws for composition of homomorphisms of finite species
left-unit-law-comp-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (f : hom-species-𝔽 F G) → Id (comp-hom-species-𝔽 F G G (id-hom-species-𝔽 G) f) f left-unit-law-comp-hom-species-𝔽 F G f = refl right-unit-law-comp-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (f : hom-species-𝔽 F G) → Id (comp-hom-species-𝔽 F F G f (id-hom-species-𝔽 F)) f right-unit-law-comp-hom-species-𝔽 F G f = refl
Characterization of the identity type of homomorphisms of finite species
htpy-eq-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (f g : hom-species-𝔽 F G) → Id f g → htpy-hom-species-𝔽 F G f g htpy-eq-hom-species-𝔽 F G f g refl X y = refl is-torsorial-htpy-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (f : hom-species-𝔽 F G) → is-torsorial (htpy-hom-species-𝔽 F G f) is-torsorial-htpy-hom-species-𝔽 F G f = is-torsorial-Eq-Π (λ X → is-torsorial-htpy (f X)) is-equiv-htpy-eq-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (f g : hom-species-𝔽 F G) → is-equiv (htpy-eq-hom-species-𝔽 F G f g) is-equiv-htpy-eq-hom-species-𝔽 F G f = fundamental-theorem-id ( is-torsorial-htpy-hom-species-𝔽 F G f) ( λ g → htpy-eq-hom-species-𝔽 F G f g) extensionality-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) (f g : hom-species-𝔽 F G) → Id f g ≃ htpy-hom-species-𝔽 F G f g pr1 (extensionality-hom-species-𝔽 F G f g) = htpy-eq-hom-species-𝔽 F G f g pr2 (extensionality-hom-species-𝔽 F G f g) = is-equiv-htpy-eq-hom-species-𝔽 F G f g
The type of homomorphisms of finite species is a set
is-set-hom-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) → is-set (hom-species-𝔽 F G) is-set-hom-species-𝔽 F G f g = is-prop-equiv ( extensionality-hom-species-𝔽 F G f g) ( is-prop-Π ( λ X → is-prop-Π ( λ x p q → is-set-is-finite (is-finite-type-𝔽 (G X)) (f X x) (g X x) p q))) hom-set-species-𝔽 : {l1 l2 l3 : Level} (F : species-𝔽 l1 l2) (G : species-𝔽 l1 l3) → Set (lsuc l1 ⊔ l2 ⊔ l3) pr1 (hom-set-species-𝔽 F G) = hom-species-𝔽 F G pr2 (hom-set-species-𝔽 F G) = is-set-hom-species-𝔽 F G
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2024-01-11. Fredrik Bakke. Make type family implicit for
is-torsorial-Eq-structure
andis-torsorial-Eq-Π
(#995). - 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875).