Retracts of sequential diagrams
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-12-05.
Last modified on 2024-01-28.
module synthetic-homotopy-theory.retracts-of-sequential-diagrams where
Imports
open import elementary-number-theory.natural-numbers open import foundation.commuting-squares-of-maps open import foundation.dependent-pair-types open import foundation.equality-dependent-function-types open import foundation.equivalences open import foundation.function-types open import foundation.homotopies open import foundation.homotopy-induction open import foundation.identity-types open import foundation.retractions open import foundation.retracts-of-types open import foundation.universe-levels open import synthetic-homotopy-theory.morphisms-sequential-diagrams open import synthetic-homotopy-theory.sequential-diagrams
Idea
A
retract¶
of sequential diagrams A
of B
is a
morphism of sequential diagrams
B → A
that is a retraction.
Definitions
The predicate of being a retraction of sequential diagrams
module _ {l1 l2 : Level} (A : sequential-diagram l1) (B : sequential-diagram l2) (i : hom-sequential-diagram A B) (r : hom-sequential-diagram B A) where is-retraction-hom-sequential-diagram : UU l1 is-retraction-hom-sequential-diagram = htpy-hom-sequential-diagram A ( comp-hom-sequential-diagram A B A r i) ( id-hom-sequential-diagram A)
The type of retractions of a morphism of sequential diagrams
module _ {l1 l2 : Level} (A : sequential-diagram l1) (B : sequential-diagram l2) (i : hom-sequential-diagram A B) where retraction-hom-sequential-diagram : UU (l1 ⊔ l2) retraction-hom-sequential-diagram = Σ (hom-sequential-diagram B A) (is-retraction-hom-sequential-diagram A B i) module _ (r : retraction-hom-sequential-diagram) where hom-retraction-hom-sequential-diagram : hom-sequential-diagram B A hom-retraction-hom-sequential-diagram = pr1 r is-retraction-hom-retraction-hom-sequential-diagram : is-retraction-hom-sequential-diagram A B i ( hom-retraction-hom-sequential-diagram) is-retraction-hom-retraction-hom-sequential-diagram = pr2 r
The predicate that a sequential diagram A
is a retract of a sequential diagram B
retract-sequential-diagram : {l1 l2 : Level} (B : sequential-diagram l2) (A : sequential-diagram l1) → UU (l1 ⊔ l2) retract-sequential-diagram B A = Σ (hom-sequential-diagram A B) (retraction-hom-sequential-diagram A B)
The higher coherence in the definition of retracts of sequential diagrams
module _ {l1 l2 : Level} (A : sequential-diagram l1) (B : sequential-diagram l2) (i : hom-sequential-diagram A B) (r : hom-sequential-diagram B A) where coherence-retract-sequential-diagram : ( (n : ℕ) → is-retraction ( map-hom-sequential-diagram B i n) ( map-hom-sequential-diagram A r n)) → UU l1 coherence-retract-sequential-diagram = coherence-htpy-hom-sequential-diagram A ( comp-hom-sequential-diagram A B A r i) ( id-hom-sequential-diagram A)
The binary relation A B ↦ A retract-of-sequential-diagram B
asserting that A
is a retract of the sequential diagram B
module _ {l1 l2 : Level} (A : sequential-diagram l1) (B : sequential-diagram l2) where infix 6 _retract-of-sequential-diagram_ _retract-of-sequential-diagram_ : UU (l1 ⊔ l2) _retract-of-sequential-diagram_ = retract-sequential-diagram B A module _ {l1 l2 : Level} (A : sequential-diagram l1) (B : sequential-diagram l2) (R : A retract-of-sequential-diagram B) where inclusion-retract-sequential-diagram : hom-sequential-diagram A B inclusion-retract-sequential-diagram = pr1 R map-inclusion-retract-sequential-diagram : (n : ℕ) → family-sequential-diagram A n → family-sequential-diagram B n map-inclusion-retract-sequential-diagram = map-hom-sequential-diagram B inclusion-retract-sequential-diagram naturality-inclusion-retract-sequential-diagram : naturality-hom-sequential-diagram A B ( map-inclusion-retract-sequential-diagram) naturality-inclusion-retract-sequential-diagram = naturality-map-hom-sequential-diagram B ( inclusion-retract-sequential-diagram) retraction-retract-sequential-diagram : retraction-hom-sequential-diagram A B inclusion-retract-sequential-diagram retraction-retract-sequential-diagram = pr2 R hom-retraction-retract-sequential-diagram : hom-sequential-diagram B A hom-retraction-retract-sequential-diagram = hom-retraction-hom-sequential-diagram A B ( inclusion-retract-sequential-diagram) ( retraction-retract-sequential-diagram) map-hom-retraction-retract-sequential-diagram : (n : ℕ) → family-sequential-diagram B n → family-sequential-diagram A n map-hom-retraction-retract-sequential-diagram = map-hom-sequential-diagram A hom-retraction-retract-sequential-diagram naturality-hom-retraction-retract-sequential-diagram : naturality-hom-sequential-diagram B A ( map-hom-retraction-retract-sequential-diagram) naturality-hom-retraction-retract-sequential-diagram = naturality-map-hom-sequential-diagram A ( hom-retraction-retract-sequential-diagram) is-retraction-hom-retraction-retract-sequential-diagram : is-retraction-hom-sequential-diagram A B ( inclusion-retract-sequential-diagram) ( hom-retraction-retract-sequential-diagram) is-retraction-hom-retraction-retract-sequential-diagram = is-retraction-hom-retraction-hom-sequential-diagram A B ( inclusion-retract-sequential-diagram) ( retraction-retract-sequential-diagram) is-retraction-map-hom-retraction-retract-sequential-diagram : (n : ℕ) → is-retraction ( map-inclusion-retract-sequential-diagram n) ( map-hom-retraction-retract-sequential-diagram n) is-retraction-map-hom-retraction-retract-sequential-diagram = htpy-htpy-hom-sequential-diagram A ( is-retraction-hom-retraction-retract-sequential-diagram) retract-family-retract-sequential-diagram : (n : ℕ) → ( family-sequential-diagram A n) retract-of ( family-sequential-diagram B n) pr1 (retract-family-retract-sequential-diagram n) = map-inclusion-retract-sequential-diagram n pr1 (pr2 (retract-family-retract-sequential-diagram n)) = map-hom-retraction-retract-sequential-diagram n pr2 (pr2 (retract-family-retract-sequential-diagram n)) = is-retraction-map-hom-retraction-retract-sequential-diagram n coh-retract-sequential-diagram : coherence-retract-sequential-diagram A B ( inclusion-retract-sequential-diagram) ( hom-retraction-retract-sequential-diagram) ( is-retraction-map-hom-retraction-retract-sequential-diagram) coh-retract-sequential-diagram = coherence-htpy-htpy-hom-sequential-diagram A ( is-retraction-hom-retraction-retract-sequential-diagram)
See also
Recent changes
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).
- 2023-12-05. Fredrik Bakke. Retracts of sequential diagrams induce retracts of sequential colimits (#968).