Endomorphisms in precategories
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-09-13.
Last modified on 2023-09-26.
module category-theory.endomorphisms-in-precategories where
Imports
open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.monoids open import group-theory.semigroups
Definition
The monoid of endomorphisms on an object in a precategory
module _ {l1 l2 : Level} (C : Precategory l1 l2) (X : obj-Precategory C) where type-endo-Precategory : UU l2 type-endo-Precategory = hom-Precategory C X X comp-endo-Precategory : type-endo-Precategory → type-endo-Precategory → type-endo-Precategory comp-endo-Precategory g f = comp-hom-Precategory C g f id-endo-Precategory : type-endo-Precategory id-endo-Precategory = id-hom-Precategory C associative-comp-endo-Precategory : (h g f : type-endo-Precategory) → ( comp-endo-Precategory (comp-endo-Precategory h g) f) = ( comp-endo-Precategory h (comp-endo-Precategory g f)) associative-comp-endo-Precategory = associative-comp-hom-Precategory C left-unit-law-comp-endo-Precategory : (f : type-endo-Precategory) → comp-endo-Precategory id-endo-Precategory f = f left-unit-law-comp-endo-Precategory = left-unit-law-comp-hom-Precategory C right-unit-law-comp-endo-Precategory : (f : type-endo-Precategory) → comp-endo-Precategory f id-endo-Precategory = f right-unit-law-comp-endo-Precategory = right-unit-law-comp-hom-Precategory C set-endo-Precategory : Set l2 set-endo-Precategory = hom-set-Precategory C X X semigroup-endo-Precategory : Semigroup l2 pr1 semigroup-endo-Precategory = set-endo-Precategory pr1 (pr2 semigroup-endo-Precategory) = comp-endo-Precategory pr2 (pr2 semigroup-endo-Precategory) = associative-comp-endo-Precategory monoid-endo-Precategory : Monoid l2 pr1 monoid-endo-Precategory = semigroup-endo-Precategory pr1 (pr2 monoid-endo-Precategory) = id-endo-Precategory pr1 (pr2 (pr2 monoid-endo-Precategory)) = left-unit-law-comp-endo-Precategory pr2 (pr2 (pr2 monoid-endo-Precategory)) = right-unit-law-comp-endo-Precategory
Recent changes
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-13. Fredrik Bakke and Egbert Rijke. Refactor structured monoids (#761).