Convergent series in the real numbers
Content created by Louis Wasserman.
Created on 2025-12-03.
Last modified on 2025-12-03.
module analysis.convergent-series-real-numbers where
Imports
open import analysis.convergent-series-complete-metric-abelian-groups open import analysis.convergent-series-metric-abelian-groups open import analysis.series-real-numbers open import foundation.propositions open import foundation.universe-levels open import real-numbers.cauchy-sequences-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.metric-additive-group-of-real-numbers
Idea
A series of real numbers is convergent¶ if its sequence of partial sums converges in the metric space of real numbers.
Definition
module _ {l : Level} (σ : series-ℝ l) where is-sum-prop-series-ℝ : ℝ l → Prop l is-sum-prop-series-ℝ = is-sum-prop-series-Metric-Ab σ is-sum-series-ℝ : ℝ l → UU l is-sum-series-ℝ = is-sum-series-Metric-Ab σ is-convergent-prop-series-ℝ : Prop (lsuc l) is-convergent-prop-series-ℝ = is-convergent-prop-series-Metric-Ab σ is-convergent-series-ℝ : UU (lsuc l) is-convergent-series-ℝ = is-convergent-series-Metric-Ab σ
Properties
If the partial sums of a series form a Cauchy sequence, the series converges
module _ {l : Level} (σ : series-ℝ l) where is-convergent-is-cauchy-sequence-partial-sum-series-ℝ : is-cauchy-sequence-ℝ (partial-sum-series-ℝ σ) → is-convergent-series-ℝ σ is-convergent-is-cauchy-sequence-partial-sum-series-ℝ = is-convergent-is-cauchy-sequence-partial-sum-series-Complete-Metric-Ab ( complete-metric-ab-add-ℝ l) ( σ)
External links
- Convergent series at Wikidata
- Convergent series on Wikipedia
Recent changes
- 2025-12-03. Louis Wasserman. Series in Banach spaces (#1710).