Absolute value on closed intervals in the rational numbers
Content created by Louis Wasserman.
Created on 2025-10-09.
Last modified on 2025-10-09.
module elementary-number-theory.absolute-value-closed-intervals-rational-numbers where
Imports
open import elementary-number-theory.absolute-value-rational-numbers open import elementary-number-theory.closed-intervals-rational-numbers open import elementary-number-theory.inequality-nonnegative-rational-numbers open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.maximum-nonnegative-rational-numbers open import elementary-number-theory.maximum-rational-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.binary-transport open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.identity-types
Idea
The
absolute value of
an element of a
closed interval
[a, b]
of rational numbers is
bounded by max(|a|, |b|)
.
Definition
max-abs-closed-interval-ℚ : closed-interval-ℚ → ℚ⁰⁺ max-abs-closed-interval-ℚ ((p , q) , p≤q) = max-ℚ⁰⁺ (abs-ℚ p) (abs-ℚ q) rational-max-abs-closed-interval-ℚ : closed-interval-ℚ → ℚ rational-max-abs-closed-interval-ℚ [p,q] = rational-ℚ⁰⁺ (max-abs-closed-interval-ℚ [p,q])
Properties
If r ∈ [p,q]
, then |r| ≤ max(|p|, |q|)
abstract leq-max-abs-is-in-closed-interval-ℚ : ([p,q] : closed-interval-ℚ) (r : ℚ) → is-in-closed-interval-ℚ [p,q] r → leq-ℚ⁰⁺ (abs-ℚ r) (max-abs-closed-interval-ℚ [p,q]) leq-max-abs-is-in-closed-interval-ℚ ((p , q) , p≤q) r (p≤r , r≤q) = rec-coproduct ( λ r≤0 → transitive-leq-ℚ ( rational-abs-ℚ r) ( rational-abs-ℚ p) ( max-ℚ (rational-abs-ℚ p) (rational-abs-ℚ q)) ( leq-left-max-ℚ _ _) ( leq-abs-leq-leq-neg-ℚ ( r) ( rational-abs-ℚ p) ( transitive-leq-ℚ r zero-ℚ (rational-abs-ℚ p) ( leq-zero-rational-ℚ⁰⁺ (abs-ℚ p)) ( r≤0)) ( transitive-leq-ℚ (neg-ℚ r) (neg-ℚ p) (rational-abs-ℚ p) ( neg-leq-abs-ℚ p) ( neg-leq-ℚ _ _ p≤r)))) ( λ 0≤r → transitive-leq-ℚ ( rational-abs-ℚ r) ( rational-abs-ℚ q) ( max-ℚ (rational-abs-ℚ p) (rational-abs-ℚ q)) ( leq-right-max-ℚ _ _) ( binary-tr ( leq-ℚ) ( inv (rational-abs-zero-leq-ℚ r 0≤r)) ( inv ( rational-abs-zero-leq-ℚ ( q) ( transitive-leq-ℚ zero-ℚ r q r≤q 0≤r))) ( r≤q))) ( linear-leq-ℚ r zero-ℚ)
Recent changes
- 2025-10-09. Louis Wasserman. Multiplication of real numbers (#1384).