Mere lifting properties
Content created by Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2023-02-18.
Last modified on 2023-08-23.
module orthogonal-factorization-systems.mere-lifting-properties where
Imports
open import foundation.propositions open import foundation.surjective-maps open import foundation.universe-levels open import orthogonal-factorization-systems.pullback-hom
Idea
Given two maps, f : A → X
and g : B → Y
, we say that f
has the mere left
lifting property with respect to g
and that g
has the mere right lifting
property with respect to f
if the
pullback-hom is
surjective. This means that the type of
lifting operations
between f
and g
is merely inhabited.
Definition
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → X) (g : B → Y) where mere-diagonal-lift : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) mere-diagonal-lift = is-surjective (pullback-hom f g)
Properties
Mere lifting properties are properties
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → X) (g : B → Y) where is-prop-mere-diagonal-lift : is-prop (mere-diagonal-lift f g) is-prop-mere-diagonal-lift = is-prop-is-surjective (pullback-hom f g) mere-diagonal-lift-Prop : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) mere-diagonal-lift-Prop = is-surjective-Prop (pullback-hom f g)
Recent changes
- 2023-08-23. Fredrik Bakke. Pre-commit fixes and some miscellaneous changes (#705).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).