Copresheaf categories

Content created by Fredrik Bakke, Egbert Rijke, Fernando Chu, Daniel Gratzer and Elisabeth Stenholm.

Created on 2023-11-01.
Last modified on 2024-09-04.

module category-theory.copresheaf-categories where
Imports
open import category-theory.categories
open import category-theory.category-of-functors-from-small-to-large-categories
open import category-theory.constant-functors
open import category-theory.functors-from-small-to-large-precategories
open import category-theory.functors-precategories
open import category-theory.initial-objects-precategories
open import category-theory.large-categories
open import category-theory.large-precategories
open import category-theory.natural-transformations-functors-from-small-to-large-precategories
open import category-theory.natural-transformations-functors-precategories
open import category-theory.precategories
open import category-theory.precategory-of-functors-from-small-to-large-precategories
open import category-theory.terminal-objects-precategories

open import foundation.category-of-sets
open import foundation.commuting-squares-of-maps
open import foundation.dependent-pair-types
open import foundation.empty-types
open import foundation.equality-cartesian-product-types
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.functoriality-cartesian-product-types
open import foundation.homotopies
open import foundation.identity-types
open import foundation.propositions
open import foundation.raising-universe-levels
open import foundation.sets
open import foundation.unit-type
open import foundation.universe-levels

Idea

Given a precategory C, we can form its copresheaf category as the large category of functors from C, into the large category of sets

  C → Set.

To this large category, there is an associated small category of small copresheaves, taking values in small sets.

Definitions

The large category of copresheaves on a precategory

module _
  {l1 l2 : Level} (C : Precategory l1 l2)
  where

  copresheaf-large-precategory-Precategory :
    Large-Precategory  l  l1  l2  lsuc l)  l l'  l1  l2  l  l')
  copresheaf-large-precategory-Precategory =
    functor-large-precategory-Small-Large-Precategory C Set-Large-Precategory

  is-large-category-copresheaf-large-category-Precategory :
    is-large-category-Large-Precategory copresheaf-large-precategory-Precategory
  is-large-category-copresheaf-large-category-Precategory =
    is-large-category-functor-large-precategory-is-large-category-Small-Large-Precategory
      ( C)
      ( Set-Large-Precategory)
      ( is-large-category-Set-Large-Precategory)

  copresheaf-large-category-Precategory :
    Large-Category  l  l1  l2  lsuc l)  l l'  l1  l2  l  l')
  large-precategory-Large-Category copresheaf-large-category-Precategory =
    copresheaf-large-precategory-Precategory
  is-large-category-Large-Category copresheaf-large-category-Precategory =
    is-large-category-copresheaf-large-category-Precategory

  copresheaf-Precategory :
    (l : Level)  UU (l1  l2  lsuc l)
  copresheaf-Precategory =
    obj-Large-Precategory copresheaf-large-precategory-Precategory

  module _
    {l : Level} (P : copresheaf-Precategory l)
    where

    element-set-copresheaf-Precategory : obj-Precategory C  Set l
    element-set-copresheaf-Precategory =
      obj-functor-Small-Large-Precategory C Set-Large-Precategory P

    element-copresheaf-Precategory : obj-Precategory C  UU l
    element-copresheaf-Precategory X =
      type-Set (element-set-copresheaf-Precategory X)

    action-copresheaf-Precategory :
      {X Y : obj-Precategory C} 
      hom-Precategory C X Y 
      element-copresheaf-Precategory X  element-copresheaf-Precategory Y
    action-copresheaf-Precategory f =
      hom-functor-Small-Large-Precategory C Set-Large-Precategory P f

    preserves-id-action-copresheaf-Precategory :
      {X : obj-Precategory C} 
      action-copresheaf-Precategory {X} {X} (id-hom-Precategory C) ~ id
    preserves-id-action-copresheaf-Precategory =
      htpy-eq
        ( preserves-id-functor-Small-Large-Precategory C
          ( Set-Large-Precategory)
          ( P)
          ( _))

    preserves-comp-action-copresheaf-Precategory :
      {X Y Z : obj-Precategory C}
      (g : hom-Precategory C Y Z) (f : hom-Precategory C X Y) 
      action-copresheaf-Precategory (comp-hom-Precategory C g f) ~
      action-copresheaf-Precategory g  action-copresheaf-Precategory f
    preserves-comp-action-copresheaf-Precategory g f =
      htpy-eq
        ( preserves-comp-functor-Small-Large-Precategory C
          ( Set-Large-Precategory)
          ( P)
          ( g)
          ( f))

  hom-set-copresheaf-Precategory :
    {l3 l4 : Level}
    (P : copresheaf-Precategory l3)
    (Q : copresheaf-Precategory l4)  Set (l1  l2  l3  l4)
  hom-set-copresheaf-Precategory =
    hom-set-Large-Precategory copresheaf-large-precategory-Precategory

  hom-copresheaf-Precategory :
    {l3 l4 : Level}
    (X : copresheaf-Precategory l3) (Y : copresheaf-Precategory l4) 
    UU (l1  l2  l3  l4)
  hom-copresheaf-Precategory =
    hom-Large-Precategory copresheaf-large-precategory-Precategory

  module _
    {l3 l4 : Level}
    (P : copresheaf-Precategory l3) (Q : copresheaf-Precategory l4)
    (h : hom-copresheaf-Precategory P Q)
    where

    map-hom-copresheaf-Precategory :
      (X : obj-Precategory C) 
      element-copresheaf-Precategory P X  element-copresheaf-Precategory Q X
    map-hom-copresheaf-Precategory =
      hom-natural-transformation-Small-Large-Precategory C
        ( Set-Large-Precategory)
        ( P)
        ( Q)
        ( h)

    naturality-hom-copresheaf-Precategory :
      {X Y : obj-Precategory C} (f : hom-Precategory C X Y) 
      coherence-square-maps
        ( action-copresheaf-Precategory P f)
        ( map-hom-copresheaf-Precategory X)
        ( map-hom-copresheaf-Precategory Y)
        ( action-copresheaf-Precategory Q f)
    naturality-hom-copresheaf-Precategory f =
      htpy-eq
        ( naturality-natural-transformation-Small-Large-Precategory C
          ( Set-Large-Precategory)
          ( P)
          ( Q)
          ( h)
          ( f))

  comp-hom-copresheaf-Precategory :
    {l3 l4 l5 : Level}
    (X : copresheaf-Precategory l3)
    (Y : copresheaf-Precategory l4)
    (Z : copresheaf-Precategory l5) 
    hom-copresheaf-Precategory Y Z 
    hom-copresheaf-Precategory X Y 
    hom-copresheaf-Precategory X Z
  comp-hom-copresheaf-Precategory X Y Z =
    comp-hom-Large-Precategory
      ( copresheaf-large-precategory-Precategory)
      { X = X}
      { Y}
      { Z}

  id-hom-copresheaf-Precategory :
    {l3 : Level} (X : copresheaf-Precategory l3) 
    hom-copresheaf-Precategory X X
  id-hom-copresheaf-Precategory X =
    id-hom-Large-Precategory copresheaf-large-precategory-Precategory {X = X}

  associative-comp-hom-copresheaf-Precategory :
    {l3 l4 l5 l6 : Level}
    (X : copresheaf-Precategory l3)
    (Y : copresheaf-Precategory l4)
    (Z : copresheaf-Precategory l5)
    (W : copresheaf-Precategory l6)
    (h : hom-copresheaf-Precategory Z W)
    (g : hom-copresheaf-Precategory Y Z)
    (f : hom-copresheaf-Precategory X Y) 
    comp-hom-copresheaf-Precategory X Y W
      ( comp-hom-copresheaf-Precategory Y Z W h g)
      ( f) 
    comp-hom-copresheaf-Precategory X Z W
      ( h)
      ( comp-hom-copresheaf-Precategory X Y Z g f)
  associative-comp-hom-copresheaf-Precategory X Y Z W =
    associative-comp-hom-Large-Precategory
      ( copresheaf-large-precategory-Precategory)
      { X = X}
      { Y}
      { Z}
      { W}

  left-unit-law-comp-hom-copresheaf-Precategory :
    {l3 l4 : Level}
    (X : copresheaf-Precategory l3)
    (Y : copresheaf-Precategory l4)
    (f : hom-copresheaf-Precategory X Y) 
    comp-hom-copresheaf-Precategory X Y Y
      ( id-hom-copresheaf-Precategory Y)
      ( f) 
    f
  left-unit-law-comp-hom-copresheaf-Precategory X Y =
    left-unit-law-comp-hom-Large-Precategory
      ( copresheaf-large-precategory-Precategory)
      { X = X}
      { Y}

  right-unit-law-comp-hom-copresheaf-Precategory :
    {l3 l4 : Level}
    (X : copresheaf-Precategory l3)
    (Y : copresheaf-Precategory l4)
    (f : hom-copresheaf-Precategory X Y) 
    comp-hom-copresheaf-Precategory X X Y
      ( f)
      ( id-hom-copresheaf-Precategory X) 
    f
  right-unit-law-comp-hom-copresheaf-Precategory X Y =
    right-unit-law-comp-hom-Large-Precategory
      ( copresheaf-large-precategory-Precategory)
      { X = X}
      { Y}

The category of small copresheaves on a precategory

module _
  {l1 l2 : Level} (C : Precategory l1 l2) (l : Level)
  where

  copresheaf-category-Precategory :
    Category (l1  l2  lsuc l) (l1  l2  l)
  copresheaf-category-Precategory =
    category-Large-Category (copresheaf-large-category-Precategory C) l

  copresheaf-precategory-Precategory :
    Precategory (l1  l2  lsuc l) (l1  l2  l)
  copresheaf-precategory-Precategory =
    precategory-Large-Precategory (copresheaf-large-precategory-Precategory C) l

The product of small copresheaves

module _
  {l1 l2 l3 l4 : Level} (C : Precategory l1 l2)
  where

  product-hom-copresheaf-Precategory :
    copresheaf-Precategory C l3 
    copresheaf-Precategory C l4 
    copresheaf-Precategory C (l3  l4)
  pr1 (product-hom-copresheaf-Precategory F G) x =
    product-Set
      ( obj-functor-Precategory C (Set-Precategory l3) F x)
      ( obj-functor-Precategory C (Set-Precategory l4) G x)
  pr1 (pr2 (product-hom-copresheaf-Precategory F G)) f =
    map-product
      ( hom-functor-Precategory C (Set-Precategory l3) F f)
      ( hom-functor-Precategory C (Set-Precategory l4) G f)
  pr1 (pr2 (pr2 (product-hom-copresheaf-Precategory F G))) g f =
    eq-htpy
      ( λ w 
        eq-pair
          ( htpy-eq
            ( preserves-comp-functor-Precategory C (Set-Precategory l3)
              F g f)
            ( pr1 w))
          ( htpy-eq
            ( preserves-comp-functor-Precategory C (Set-Precategory l4)
              G g f)
            ( pr2 w)))
  pr2 (pr2 (pr2 (product-hom-copresheaf-Precategory F G))) x =
    eq-htpy
      ( λ w 
        eq-pair
          ( htpy-eq
            ( preserves-id-functor-Precategory C (Set-Precategory l3)
              F x)
            ( pr1 w))
          ( htpy-eq
            ( preserves-id-functor-Precategory C (Set-Precategory l4)
              G x)
            ( pr2 w)))

The initial copresheaf

Since colimits are computed pointwise, the initial copresheaf is the constant functor at the empty set.

module _
  {l1 l2 : Level} (C : Precategory l1 l2) (l : Level)
  where

  obj-initial-copresheaf-Precategory :
    copresheaf-Precategory C l
  obj-initial-copresheaf-Precategory =
    constant-functor-Precategory
      C (Set-Precategory l) (raise-empty-Set l)

  hom-initial-copresheaf-Precategory :
    ( X : copresheaf-Precategory C l) 
    hom-Precategory
      (copresheaf-precategory-Precategory C l)
      obj-initial-copresheaf-Precategory
      X
  pr1 (hom-initial-copresheaf-Precategory X) x (map-raise ())
  pr2 (hom-initial-copresheaf-Precategory X) f =
    eq-htpy  where (map-raise ()))

  is-unique-hom-initial-copresheaf-Precategory :
    ( X : copresheaf-Precategory C l) 
    ( τ :
      hom-Precategory
        (copresheaf-precategory-Precategory C l)
        obj-initial-copresheaf-Precategory
        X) 
    hom-initial-copresheaf-Precategory X  τ
  is-unique-hom-initial-copresheaf-Precategory X τ =
    eq-htpy-hom-family-natural-transformation-Precategory
      ( C)
      ( Set-Precategory l)
      ( obj-initial-copresheaf-Precategory)
      ( X)
      ( hom-initial-copresheaf-Precategory X)
      ( τ)
      ( λ x  eq-htpy  where (map-raise ())))

  initial-copresheaf-Precategory :
    initial-obj-Precategory
      (copresheaf-precategory-Precategory C l)
  pr1 initial-copresheaf-Precategory =
    obj-initial-copresheaf-Precategory
  pr1 (pr2 initial-copresheaf-Precategory X) =
    hom-initial-copresheaf-Precategory X
  pr2 (pr2 initial-copresheaf-Precategory X) τ =
    is-unique-hom-initial-copresheaf-Precategory X τ

The terminal copresheaf

Since limits are computed pointwise, the terminal copresheaf is the constant functor at the terminal set.

module _
  {l1 l2 : Level} (C : Precategory l1 l2) (l : Level)
  where

  obj-terminal-copresheaf-Precategory :
    copresheaf-Precategory C l
  obj-terminal-copresheaf-Precategory =
    constant-functor-Precategory
      C (Set-Precategory l) (raise-unit-Set l)

  hom-terminal-copresheaf-Precategory :
    ( X : copresheaf-Precategory C l) 
    hom-Precategory
      (copresheaf-precategory-Precategory C l)
      X
      obj-terminal-copresheaf-Precategory
  pr1 (hom-terminal-copresheaf-Precategory X) c m = raise-star
  pr2 (hom-terminal-copresheaf-Precategory X) f = refl

  is-unique-hom-terminal-copresheaf-Precategory :
    ( X : copresheaf-Precategory C l) 
    ( τ :
      hom-Precategory
        (copresheaf-precategory-Precategory C l)
        X
        obj-terminal-copresheaf-Precategory) 
    hom-terminal-copresheaf-Precategory X  τ
  is-unique-hom-terminal-copresheaf-Precategory X τ =
    eq-htpy-hom-family-natural-transformation-Precategory
      ( C)
      ( Set-Precategory l)
      ( X)
      ( obj-terminal-copresheaf-Precategory)
      ( hom-terminal-copresheaf-Precategory X)
      ( τ)
      ( λ x  eq-htpy  _  eq-is-prop is-prop-raise-unit))

  terminal-copresheaf-Precategory :
    terminal-obj-Precategory
      (copresheaf-precategory-Precategory C l)
  pr1 terminal-copresheaf-Precategory =
    obj-terminal-copresheaf-Precategory
  pr1 (pr2 terminal-copresheaf-Precategory X) =
    hom-terminal-copresheaf-Precategory X
  pr2 (pr2 terminal-copresheaf-Precategory X) τ =
    is-unique-hom-terminal-copresheaf-Precategory X τ

See also

Recent changes