Radical ideals of rings
Content created by Jonathan Prieto-Cubides, Egbert Rijke, Fredrik Bakke, Maša Žaucer and Gregor Perčič.
Created on 2022-05-20.
Last modified on 2023-09-21.
module ring-theory.radical-ideals-rings where
Imports
open import foundation.propositions open import foundation.universe-levels open import ring-theory.ideals-rings open import ring-theory.invertible-elements-rings open import ring-theory.rings
Idea
A radical ideal in a ring R is an ideal I such that 1 + x
is a multiplicative
unit for every x ∈ I
.
Definition
module _ {l1 l2 : Level} (R : Ring l1) (I : ideal-Ring l2 R) where is-radical-ideal-prop-Ring : Prop (l1 ⊔ l2) is-radical-ideal-prop-Ring = Π-Prop ( type-ideal-Ring R I) ( λ x → is-invertible-element-prop-Ring R ( add-Ring R (one-Ring R) (inclusion-ideal-Ring R I x))) is-radical-ideal-Ring : UU (l1 ⊔ l2) is-radical-ideal-Ring = type-Prop is-radical-ideal-prop-Ring is-prop-is-radical-ideal-Ring : is-prop is-radical-ideal-Ring is-prop-is-radical-ideal-Ring = is-prop-type-Prop is-radical-ideal-prop-Ring
Recent changes
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).
- 2023-03-19. Egbert Rijke. Refactoring ideals in semirings, rings, commutative semirings, and commutative rings; refactoring a corollary of the binomial theorem; constructing the nilradical of an ideal in a commutative ring (#525).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497).