Perfect cores
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-16.
Last modified on 2023-10-16.
module group-theory.perfect-cores where
Imports
open import foundation.logical-equivalences open import foundation.universe-levels open import group-theory.groups open import group-theory.perfect-subgroups open import group-theory.subgroups
Idea
The perfect core of a group G
is the largest
perfect subgroup of G
. That is, the
subgroup perfect-core G
satisfies the following
universal property:
(H : Subgroup G) → is-perfect-Subgroup G H ↔ H ⊆ perfect-core G
Definitions
The predicate of being a perfect core
module _ {l1 l2 : Level} (G : Group l1) (H : Subgroup l2 G) where is-perfect-core-Subgroup : UUω is-perfect-core-Subgroup = {l : Level} (K : Subgroup l G) → is-perfect-Subgroup G K ↔ leq-Subgroup G K H
External links
- Perfect core at Wikipedia
A wikidata identifier was not available for this concept.
Recent changes
- 2023-10-16. Egbert Rijke and Fredrik Bakke. The perfect core of a group (#850).