Nonzero real numbers
Content created by Louis Wasserman.
Created on 2025-10-15.
Last modified on 2025-10-15.
{-# OPTIONS --lossy-unification #-} module real-numbers.nonzero-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import real-numbers.apartness-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.negative-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.rational-real-numbers
Idea
A real number is nonzero¶ if it is apart from zero, or equivalently if it is negative or positive.
Definition
is-nonzero-prop-ℝ : {l : Level} → ℝ l → Prop l is-nonzero-prop-ℝ x = apart-prop-ℝ x zero-ℝ is-nonzero-ℝ : {l : Level} → ℝ l → UU l is-nonzero-ℝ x = type-Prop (is-nonzero-prop-ℝ x) nonzero-ℝ : (l : Level) → UU (lsuc l) nonzero-ℝ l = type-subtype (is-nonzero-prop-ℝ {l}) real-nonzero-ℝ : {l : Level} → nonzero-ℝ l → ℝ l real-nonzero-ℝ = inclusion-subtype is-nonzero-prop-ℝ is-nonzero-real-nonzero-ℝ : {l : Level} (x : nonzero-ℝ l) → is-nonzero-ℝ (real-nonzero-ℝ x) is-nonzero-real-nonzero-ℝ = pr2
Properties
Positive real numbers are nonzero
is-nonzero-is-positive-ℝ : {l : Level} {x : ℝ l} → is-positive-ℝ x → is-nonzero-ℝ x is-nonzero-is-positive-ℝ = inr-disjunction nonzero-ℝ⁺ : {l : Level} → ℝ⁺ l → nonzero-ℝ l nonzero-ℝ⁺ (x , is-pos-x) = (x , inr-disjunction is-pos-x)
Negative real numbers are nonzero
is-nonzero-is-negative-ℝ : {l : Level} {x : ℝ l} → is-negative-ℝ x → is-nonzero-ℝ x is-nonzero-is-negative-ℝ = inl-disjunction nonzero-ℝ⁻ : {l : Level} → ℝ⁻ l → nonzero-ℝ l nonzero-ℝ⁻ (x , is-neg-x) = (x , inl-disjunction is-neg-x)
Characterization of equality
eq-nonzero-ℝ : {l : Level} (x y : nonzero-ℝ l) → (real-nonzero-ℝ x = real-nonzero-ℝ y) → x = y eq-nonzero-ℝ _ _ = eq-type-subtype is-nonzero-prop-ℝ
Recent changes
- 2025-10-15. Louis Wasserman. Multiplicative inverses of nonzero real numbers (#1571).